IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30662-4.html
   My bibliography  Save this article

Structural independence of hydrogen-bond symmetrisation dynamics at extreme pressure conditions

Author

Listed:
  • Thomas Meier

    (Center for High Pressure Science and Technology Advance Research)

  • Florian Trybel

    (Linköping University)

  • Saiana Khandarkhaeva

    (Bayerisches Geoinstitut, University of Bayreuth)

  • Dominique Laniel

    (Edinburgh Univeristy)

  • Takayuki Ishii

    (Center for High Pressure Science and Technology Advance Research)

  • Alena Aslandukova

    (Bayerisches Geoinstitut, University of Bayreuth)

  • Natalia Dubrovinskaia

    (Linköping University
    University of Bayreuth)

  • Leonid Dubrovinsky

    (Bayerisches Geoinstitut, University of Bayreuth)

Abstract

The experimental study of hydrogen-bonds and their symmetrization under extreme conditions is predominantly driven by diffraction methods, despite challenges of localising or probing the hydrogen subsystems directly. Until recently, H-bond symmetrization has been addressed in terms of either nuclear quantum effects, spin crossovers or direct structural transitions; often leading to contradictory interpretations when combined. Here, we present high-resolution in-situ 1H-NMR experiments in diamond anvil cells investigating a range of systems containing linear O-H ⋯ O units at pressure ranges of up to 90 GPa covering their respective H-bond symmetrization. We found pronounced minima in the pressure dependence of the NMR resonance line-widths associated with a maximum in hydrogen mobility, precursor to a localisation of hydrogen atoms. These minima, independent of the chemical environment of the O-H ⋯ O unit, can be found in a narrow range of oxygen oxygen distances between 2.44 and 2.45 Å, leading to an average critical oxygen-oxygen distance of $${\bar{r}}_{{{{{{{{\rm{OO}}}}}}}}}^{{{{{{{{\rm{crit}}}}}}}}}=2.443(1)$$ r ¯ OO crit = 2.443 ( 1 ) Å.

Suggested Citation

  • Thomas Meier & Florian Trybel & Saiana Khandarkhaeva & Dominique Laniel & Takayuki Ishii & Alena Aslandukova & Natalia Dubrovinskaia & Leonid Dubrovinsky, 2022. "Structural independence of hydrogen-bond symmetrisation dynamics at extreme pressure conditions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30662-4
    DOI: 10.1038/s41467-022-30662-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30662-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30662-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Meier & Sylvain Petitgirard & Saiana Khandarkhaeva & Leonid Dubrovinsky, 2018. "Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    2. Takashi Yoshino & Takuya Matsuzaki & Shigeru Yamashita & Tomoo Katsura, 2006. "Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere," Nature, Nature, vol. 443(7114), pages 973-976, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuki Komatsu & Takanori Hattori & Stefan Klotz & Shinichi Machida & Keishiro Yamashita & Hayate Ito & Hiroki Kobayashi & Tetsuo Irifune & Toru Shinmei & Asami Sano-Furukawa & Hiroyuki Kagi, 2024. "Hydrogen bond symmetrisation in D2O ice observed by neutron diffraction," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengqi Wang & Yu Wang & Zhixian Liu & Ganyu Xu & Bo Yang & Pei Yu & Haoyu Sun & Xiangyu Ye & Jingwei Zhou & Alexander F. Goncharov & Ya Wang & Jiangfeng Du, 2024. "Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in diamond anvil cell," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Kazuki Komatsu & Takanori Hattori & Stefan Klotz & Shinichi Machida & Keishiro Yamashita & Hayate Ito & Hiroki Kobayashi & Tetsuo Irifune & Toru Shinmei & Asami Sano-Furukawa & Hiroyuki Kagi, 2024. "Hydrogen bond symmetrisation in D2O ice observed by neutron diffraction," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Yunhua Fu & Renbiao Tao & Lifei Zhang & Shijie Li & Ya-Nan Yang & Dehan Shen & Zilong Wang & Thomas Meier, 2024. "Trace element detection in anhydrous minerals by micro-scale quantitative nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30662-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.