IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30552-9.html
   My bibliography  Save this article

Author Correction: Transition from simple to complex contagion in collective decision-making

Author

Listed:
  • Nikolaj Horsevad

    (University of Ottawa)

  • David Mateo

    (Kido Dynamics)

  • Robert E. Kooij

    (Delft University of Technology
    The Netherlands Organization for Applied Scientific Research (TNO))

  • Alain Barrat

    (Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems
    Tokyo Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology)

  • Roland Bouffanais

    (University of Ottawa)

Abstract

No abstract is available for this item.

Suggested Citation

  • Nikolaj Horsevad & David Mateo & Robert E. Kooij & Alain Barrat & Roland Bouffanais, 2022. "Author Correction: Transition from simple to complex contagion in collective decision-making," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30552-9
    DOI: 10.1038/s41467-022-30552-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30552-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30552-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ai, Jun & He, Tao & Su, Zhan, 2023. "Identifying influential nodes in complex networks based on resource allocation similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    2. Seyed Mohsen Mirbagheri & Ata Ollah Rafiei Atani & Mohammadreza Parsanejad, 2023. "The Effect of Collective Decision-Making on Productivity: A Structural Equation Modeling," SAGE Open, , vol. 13(4), pages 21582440231, December.
    3. Almiala, Into & Aalto, Henrik & Kuikka, Vesa, 2023. "Influence spreading model for partial breakthrough effects on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Borges, Henrique M. & Vasconcelos, Vítor V. & Pinheiro, Flávio L., 2024. "How social rewiring preferences bridge polarized communities," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30552-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.