IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30448-8.html
   My bibliography  Save this article

Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy

Author

Listed:
  • Han Wang

    (University of British Columbia
    School of Precision Instrument and Optoelectronics Engineering, Tianjin University)

  • Guojun Chen

    (University of British Columbia)

  • Hongbin Li

    (University of British Columbia)

Abstract

The RTX (repeats-in-toxin) domain of the bacterial toxin adenylate cyclase (CyaA) contains five RTX blocks (RTX-i to RTX-v) and its folding is essential for CyaA’s functions. It was shown that the C-terminal capping structure of RTX-v is critical for the whole RTX to fold. However, it is unknown how the folding signal transmits within the RTX domain. Here we use optical tweezers to investigate the interplay between the folding of RTX-iv and RTX-v. Our results show that RTX-iv alone is disordered, but folds into a Ca2+-loaded-β-roll structure in the presence of a folded RTX-v. Folding trajectories of RTX-iv-v reveal that the folding of RTX-iv is strictly conditional upon the folding of RTX-v, suggesting that the folding of RTX-iv is templated by RTX-v. This templating effect allows RTX-iv to fold rapidly, and provides significant mutual stabilization. Our study reveals a possible mechanism for transmitting the folding signal within the RTX domain.

Suggested Citation

  • Han Wang & Guojun Chen & Hongbin Li, 2022. "Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30448-8
    DOI: 10.1038/s41467-022-30448-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30448-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30448-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andres F. Oberhauser & Piotr E. Marszalek & Harold P. Erickson & Julio M. Fernandez, 1998. "The molecular elasticity of the extracellular matrix protein tenascin," Nature, Nature, vol. 393(6681), pages 181-185, May.
    2. Riti Gupta & Dmitri Toptygin & Christian M. Kaiser, 2020. "The SecA motor generates mechanical force during protein translocation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth Lichter & Benjamin Rafferty & Zachary Flohr & Ashlie Martini, 2012. "Protein High-Force Pulling Simulations Yield Low-Force Results," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    2. Zikun Zhu & Shuai Wang & Shu-ou Shan, 2022. "Ribosome profiling reveals multiple roles of SecA in cotranslational protein export," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30448-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.