Author
Listed:
- Amaury Bossion
(Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay)
- Chen Zhu
(Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay)
- Léa Guerassimoff
(Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay)
- Julie Mougin
(Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay)
- Julien Nicolas
(Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay)
Abstract
Vinyl polymers are the focus of intensive research due to their ease of synthesis and the possibility of making well-defined, functional materials. However, their non-degradability leads to environmental problems and limits their use in biomedical applications, allowing aliphatic polyesters to still be considered as the gold standards. Radical ring-opening polymerization of cyclic ketene acetals is considered the most promising approach to impart degradability to vinyl polymers. However, these materials still exhibit poor hydrolytic degradation and thus cannot yet compete with traditional polyesters. Here we show that a simple copolymerization system based on acrylamide and cyclic ketene acetals leads to well-defined and cytocompatible copolymers with faster hydrolytic degradation than that of polylactide and poly(lactide-co-glycolide). Moreover, by changing the nature of the cyclic ketene acetal, the copolymers can be either water-soluble or can exhibit tunable upper critical solution temperatures relevant for mild hyperthermia-triggered drug release. Amphiphilic diblock copolymers deriving from this system can also be formulated into degradable, thermosensitive nanoparticles by an all-water nanoprecipitation process.
Suggested Citation
Amaury Bossion & Chen Zhu & Léa Guerassimoff & Julie Mougin & Julien Nicolas, 2022.
"Vinyl copolymers with faster hydrolytic degradation than aliphatic polyesters and tunable upper critical solution temperatures,"
Nature Communications, Nature, vol. 13(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30220-y
DOI: 10.1038/s41467-022-30220-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30220-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.