IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29759-7.html
   My bibliography  Save this article

Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals

Author

Listed:
  • Feng Li

    (Jilin University
    University of Cambridge)

  • Alexander J. Gillett

    (University of Cambridge)

  • Qinying Gu

    (University of Cambridge)

  • Junshuai Ding

    (Jilin University)

  • Zhangwu Chen

    (Jilin University)

  • Timothy J. H. Hele

    (University College London)

  • William K. Myers

    (University of Oxford)

  • Richard H. Friend

    (University of Cambridge)

  • Emrys W. Evans

    (University of Cambridge
    Swansea University)

Abstract

Organic light-emitting diodes (OLEDs) must be engineered to circumvent the efficiency limit imposed by the 3:1 ratio of triplet to singlet exciton formation following electron-hole capture. Here we show the spin nature of luminescent radicals such as TTM-3PCz allows direct energy harvesting from both singlet and triplet excitons through energy transfer, with subsequent rapid and efficient light emission from the doublet excitons. This is demonstrated with a model Thermally-Activated Delayed Fluorescence (TADF) organic semiconductor, 4CzIPN, where reverse intersystem crossing from triplets is characteristically slow (50% emission by 1 µs). The radical:TADF combination shows much faster emission via the doublet channel (80% emission by 100 ns) than the comparable TADF-only system, and sustains higher electroluminescent efficiency with increasing current density than a radical-only device. By unlocking energy transfer channels between singlet, triplet and doublet excitons, further technology opportunities are enabled for optoelectronics using organic radicals.

Suggested Citation

  • Feng Li & Alexander J. Gillett & Qinying Gu & Junshuai Ding & Zhangwu Chen & Timothy J. H. Hele & William K. Myers & Richard H. Friend & Emrys W. Evans, 2022. "Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29759-7
    DOI: 10.1038/s41467-022-29759-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29759-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29759-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Hua & Yuchao Liu & Binbin Liu & Zhennan Zhao & Lei Zhang & Shouke Yan & Zhongjie Ren, 2022. "Constructing high-efficiency orange-red thermally activated delayed fluorescence emitters by three-dimension molecular engineering," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Cao Fang & Chang Xu & Wei Zhang & Meng Zhou & Dong Tan & Lixia Qian & Daqiao Hu & Shan Jin & Manzhou Zhu, 2024. "Dual-quartet phosphorescent emission in the open-shell M1Ag13 (M = Pt, Pd) nanoclusters," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29759-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.