Author
Listed:
- Jun-shan Geng
(Chinese Academy of Sciences
Sichuan University)
- Lei Mei
(Chinese Academy of Sciences)
- Yuan-yuan Liang
(Chinese Academy of Sciences)
- Li-yong Yuan
(Chinese Academy of Sciences)
- Ji-pan Yu
(Chinese Academy of Sciences)
- Kong-qiu Hu
(Chinese Academy of Sciences)
- Li-hua Yuan
(Sichuan University)
- Wen Feng
(Sichuan University)
- Zhi-fang Chai
(Chinese Academy of Sciences
Chinese Academy of Sciences)
- Wei-qun Shi
(Chinese Academy of Sciences)
Abstract
Molecular machines based on mechanically-interlocked molecules (MIMs) such as (pseudo) rotaxanes or catenates are known for their molecular-level dynamics, but promoting macro-mechanical response of these molecular machines or related materials is still challenging. Herein, by employing macrocyclic cucurbit[8]uril (CB[8])-based pseudorotaxane with a pair of styrene-derived photoactive guest molecules as linking structs of uranyl node, we describe a metal-organic rotaxane compound, U-CB[8]-MPyVB, that is capable of delivering controllable macroscopic mechanical responses. Under light irradiation, the ladder-shape structural unit of metal-organic rotaxane chain in U-CB[8]-MPyVB undergoes a regioselective solid-state [2 + 2] photodimerization, and facilitates a photo-triggered single-crystal-to-single-crystal (SCSC) transformation, which even induces macroscopic photomechanical bending of individual rod-like bulk crystals. The fabrication of rotaxane-based crystalline materials with both photoresponsive microscopic and macroscopic dynamic behaviors in solid state can be promising photoactuator devices, and will have implications in emerging fields such as optomechanical microdevices and smart microrobotics.
Suggested Citation
Jun-shan Geng & Lei Mei & Yuan-yuan Liang & Li-yong Yuan & Ji-pan Yu & Kong-qiu Hu & Li-hua Yuan & Wen Feng & Zhi-fang Chai & Wei-qun Shi, 2022.
"Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization,"
Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29738-y
DOI: 10.1038/s41467-022-29738-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29738-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.