IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29673-y.html
   My bibliography  Save this article

A structural exposé of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD loop

Author

Listed:
  • Huanchen Wang

    (National Institutes of Health)

  • Lalith Perera

    (National Institutes of Health)

  • Nikolaus Jork

    (University of Freiburg)

  • Guangning Zong

    (National Institutes of Health)

  • Andrew M. Riley

    (University of Oxford)

  • Barry V. L. Potter

    (University of Oxford)

  • Henning J. Jessen

    (University of Freiburg)

  • Stephen B. Shears

    (National Institutes of Health)

Abstract

Structural snapshots of protein/ligand complexes are a prerequisite for gaining atomic level insight into enzymatic reaction mechanisms. An important group of enzymes has been deprived of this analytical privilege: members of the protein tyrosine phosphatase (PTP) superfamily with catalytic WPD-loops lacking the indispensable general-acid/base within a tryptophan-proline-aspartate/glutamate context. Here, we provide the ligand/enzyme crystal complexes for one such PTP outlier: Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1 (AtPFA-DSP1), herein unveiled as a regioselective and efficient phosphatase towards inositol pyrophosphate (PP-InsP) signaling molecules. Although the WPD loop is missing its canonical tripeptide motif, this structural element contributes to catalysis by assisting PP-InsP delivery into the catalytic pocket, for a choreographed exchange with phosphate reaction product. Subsequently, an intramolecular proton donation by PP-InsP substrate is posited to substitute functionally for the absent aspartate/glutamate general-acid. Overall, we expand mechanistic insight into adaptability of the conserved PTP structural elements.

Suggested Citation

  • Huanchen Wang & Lalith Perera & Nikolaus Jork & Guangning Zong & Andrew M. Riley & Barry V. L. Potter & Henning J. Jessen & Stephen B. Shears, 2022. "A structural exposé of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD loop," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29673-y
    DOI: 10.1038/s41467-022-29673-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29673-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29673-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Danye Qiu & Miranda S. Wilson & Verena B. Eisenbeis & Robert K. Harmel & Esther Riemer & Thomas M. Haas & Christopher Wittwer & Nikolaus Jork & Chunfang Gu & Stephen B. Shears & Gabriel Schaaf & Bernd, 2020. "Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Igor Pavlovic & Divyeshsinh T. Thakor & Jessica R. Vargas & Colin J. McKinlay & Sebastian Hauke & Philipp Anstaett & Rafael C. Camuña & Laurent Bigler & Gilles Gasser & Carsten Schultz & Paul A. Wende, 2016. "Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingmin Yuan & Fei Gao & Zongyang Lv & Digant Nayak & Anindita Nayak & Priscila dos Santos Bury & Kristin E. Cano & Lijia Jia & Natalia Oleinik & Firdevs Cansu Atilgan & Besim Ogretmen & Katelyn M. Wi, 2022. "Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29673-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.