IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29631-8.html
   My bibliography  Save this article

Investigating the upper bound of high-frequency electromagnetic waves on unshielded twisted copper pairs

Author

Listed:
  • Ergin Dinc

    (University of Cambridge)

  • Syed Sheheryar Bukhari

    (University of Cambridge)

  • Anas Al Rawi

    (University of Cambridge
    BT Labs)

  • Eloy Lera Acedo

    (University of Cambridge)

Abstract

This paper explores the behaviour of the ubiquitous twisted pairs at high frequencies and wideband excitation of twisted pairs up to 12 GHz. Higher carrier frequencies on twisted pairs can enable the data rates required by the future communication networks; hence, the existing copper infrastructure can be utilised on the last mile complementing the fibre networks. In this paper, we show a fundamental limit on the operating frequency of twisted pairs beyond which twisted pairs start to radiate and behave like an antenna. To validate our theoretical derivations through measurements, we designed a microstrip balun to excite the differential mode on the twisted pairs. At the end, we demonstrate that the standard twisted pairs used in the UK can be used up to 5 GHz carrier frequency without any radiation effect and this upper-bound can be moved to higher frequencies by decreasing the twist lengths.

Suggested Citation

  • Ergin Dinc & Syed Sheheryar Bukhari & Anas Al Rawi & Eloy Lera Acedo, 2022. "Investigating the upper bound of high-frequency electromagnetic waves on unshielded twisted copper pairs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29631-8
    DOI: 10.1038/s41467-022-29631-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29631-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29631-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kanglin Wang & Daniel M. Mittleman, 2004. "Metal wires for terahertz wave guiding," Nature, Nature, vol. 432(7015), pages 376-379, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zenghui Bao & Yan Li & Zhiling Wang & Jiahui Wang & Jize Yang & Haonan Xiong & Yipu Song & Yukai Wu & Hongyi Zhang & Luming Duan, 2024. "A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junliang Dong & Alessandro Tomasino & Giacomo Balistreri & Pei You & Anton Vorobiov & Étienne Charette & Boris Le Drogoff & Mohamed Chaker & Aycan Yurtsever & Salvatore Stivala & Maria A. Vincenti & C, 2022. "Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yang Cao & Kathirvel Nallappan & Guofu Xu & Maksim Skorobogatiy, 2022. "Add drop multiplexers for terahertz communications using two-wire waveguide-based plasmonic circuits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29631-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.