IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29223-6.html
   My bibliography  Save this article

Impact of green clay authigenesis on element sequestration in marine settings

Author

Listed:
  • Andre Baldermann

    (Graz University of Technology, NAWI Graz Geocenter)

  • Santanu Banerjee

    (Indian Institute of Technology Bombay, Powai)

  • György Czuppon

    (Eötvös Loránd Research Network)

  • Martin Dietzel

    (Graz University of Technology, NAWI Graz Geocenter)

  • Juraj Farkaš

    (University of Adelaide, North Terrace)

  • Stefan Lӧhr

    (Macquarie University)

  • Ulrike Moser

    (Graz University of Technology, NAWI Graz Geocenter)

  • Esther Scheiblhofer

    (Graz University of Technology, NAWI Graz Geocenter)

  • Nicky M. Wright

    (University of Sydney)

  • Thomas Zack

    (University of Adelaide, North Terrace
    University of Gothenburg)

Abstract

Retrograde clay mineral reactions (reverse weathering), including glauconite formation, are first-order controls on element sequestration in marine sediments. Here, we report substantial element sequestration by glauconite formation in shallow marine settings from the Triassic to the Holocene, averaging 3 ± 2 mmol·cm−²·kyr−1 for K, Mg and Al, 16 ± 9 mmol·cm−²·kyr−1 for Si and 6 ± 3 mmol·cm−²·kyr−1 for Fe, which is ~2 orders of magnitude higher than estimates for deep-sea settings. Upscaling of glauconite abundances in shallow-water (0–200 m) environments predicts a present-day global uptake of ~≤ 0.1 Tmol·yr−1 of K, Mg and Al, and ~0.1–0.4 Tmol·yr−1 of Fe and Si, which is ~half of the estimated Mesozoic elemental flux. Clay mineral authigenesis had a large impact on the global marine element cycles throughout Earth’s history, in particular during ‘greenhouse’ periods with sea level highstand, and is key for better understanding past and present geochemical cycling in marine sediments.

Suggested Citation

  • Andre Baldermann & Santanu Banerjee & György Czuppon & Martin Dietzel & Juraj Farkaš & Stefan Lӧhr & Ulrike Moser & Esther Scheiblhofer & Nicky M. Wright & Thomas Zack, 2022. "Impact of green clay authigenesis on element sequestration in marine settings," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29223-6
    DOI: 10.1038/s41467-022-29223-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29223-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29223-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ann G. Dunlea & Richard W. Murray & Danielle P. Santiago Ramos & John A. Higgins, 2017. "Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    2. Terry T. Isson & Noah J. Planavsky, 2018. "Reverse weathering as a long-term stabilizer of marine pH and planetary climate," Nature, Nature, vol. 560(7719), pages 471-475, August.
    3. Netta Shalev & Tomaso R. R. Bontognali & C. Geoffrey Wheat & Derek Vance, 2019. "New isotope constraints on the Mg oceanic budget point to cryptic modern dolomite formation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Boriana Kalderon-Asael & Joachim A. R. Katchinoff & Noah J. Planavsky & Ashleigh v. S. Hood & Mathieu Dellinger & Eric J. Bellefroid & David S. Jones & Axel Hofmann & Frantz Ossa Ossa & Francis A. Mac, 2021. "A lithium-isotope perspective on the evolution of carbon and silicon cycles," Nature, Nature, vol. 595(7867), pages 394-398, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicia M. Wilson & Andrew Osborne & Scott M. White, 2024. "Large-scale groundwater flow and sedimentary diagenesis in continental shelves influence marine chemical budgets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Fei Zhang & Mathieu Dellinger & Robert G. Hilton & Jimin Yu & Mark B. Allen & Alexander L. Densmore & Hui Sun & Zhangdong Jin, 2022. "Hydrological control of river and seawater lithium isotopes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Terry T. Isson & Shuang Zhang & Kimberly V. Lau & Sofia Rauzi & Nicholas J. Tosca & Donald E. Penman & Noah J. Planavsky, 2022. "Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Sonja Geilert & Daniel A. Frick & Dieter Garbe-Schönberg & Florian Scholz & Stefan Sommer & Patricia Grasse & Christoph Vogt & Andrew W. Dale, 2023. "Coastal El Niño triggers rapid marine silicate alteration on the seafloor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29223-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.