IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29153-3.html
   My bibliography  Save this article

Automated multilabel diagnosis on electrocardiographic images and signals

Author

Listed:
  • Veer Sangha

    (Yale University)

  • Bobak J. Mortazavi

    (Texas A&M University
    Center for Outcomes Research and Evaluation, Yale-New Haven Hospital)

  • Adrian D. Haimovich

    (Yale University School of Medicine)

  • Antônio H. Ribeiro

    (Uppsala University)

  • Cynthia A. Brandt

    (Yale University School of Medicine
    VA Connecticut Healthcare System)

  • Daniel L. Jacoby

    (Yale School of Medicine)

  • Wade L. Schulz

    (Center for Outcomes Research and Evaluation, Yale-New Haven Hospital
    Yale School of Medicine)

  • Harlan M. Krumholz

    (Center for Outcomes Research and Evaluation, Yale-New Haven Hospital
    Yale School of Medicine
    Yale School of Public Health)

  • Antonio Luiz P. Ribeiro

    (Telehealth Center and Cardiology Service, Hospital das Clínicas
    Faculdade de Medicina, Universidade Federal de Minas Gerais)

  • Rohan Khera

    (Center for Outcomes Research and Evaluation, Yale-New Haven Hospital
    Yale School of Medicine)

Abstract

The application of artificial intelligence (AI) for automated diagnosis of electrocardiograms (ECGs) can improve care in remote settings but is limited by the reliance on infrequently available signal-based data. We report the development of a multilabel automated diagnosis model for electrocardiographic images, more suitable for broader use. A total of 2,228,236 12-lead ECGs signals from 811 municipalities in Brazil are transformed to ECG images in varying lead conformations to train a convolutional neural network (CNN) identifying 6 physician-defined clinical labels spanning rhythm and conduction disorders, and a hidden label for gender. The image-based model performs well on a distinct test set validated by at least two cardiologists (average AUROC 0.99, AUPRC 0.86), an external validation set of 21,785 ECGs from Germany (average AUROC 0.97, AUPRC 0.73), and printed ECGs, with performance superior to signal-based models, and learning clinically relevant cues based on Grad-CAM. The model allows the application of AI to ECGs across broad settings.

Suggested Citation

  • Veer Sangha & Bobak J. Mortazavi & Adrian D. Haimovich & Antônio H. Ribeiro & Cynthia A. Brandt & Daniel L. Jacoby & Wade L. Schulz & Harlan M. Krumholz & Antonio Luiz P. Ribeiro & Rohan Khera, 2022. "Automated multilabel diagnosis on electrocardiographic images and signals," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29153-3
    DOI: 10.1038/s41467-022-29153-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29153-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29153-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antônio H. Ribeiro & Manoel Horta Ribeiro & Gabriela M. M. Paixão & Derick M. Oliveira & Paulo R. Gomes & Jéssica A. Canazart & Milton P. S. Ferreira & Carl R. Andersson & Peter W. Macfarlane & Wagner, 2020. "Automatic diagnosis of the 12-lead ECG using a deep neural network," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaijian Yang & Jinhao Cheng & Jin Shang & Chen Hang & Jie Qi & Leni Zhong & Qingyan Rao & Lei He & Chenqi Liu & Li Ding & Mingming Zhang & Samit Chakrabarty & Xingyu Jiang, 2023. "Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Christian Bock & Joan Elias Walter & Bastian Rieck & Ivo Strebel & Klara Rumora & Ibrahim Schaefer & Michael J. Zellweger & Karsten Borgwardt & Christian Müller, 2024. "Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Jintai Chen & Shuai Huang & Ying Zhang & Qing Chang & Yixiao Zhang & Dantong Li & Jia Qiu & Lianting Hu & Xiaoting Peng & Yunmei Du & Yunfei Gao & Danny Z. Chen & Abdelouahab Bellou & Jian Wu & Huiyin, 2024. "Congenital heart disease detection by pediatric electrocardiogram based deep learning integrated with human concepts," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29153-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.