Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-29124-8
Download full text from publisher
References listed on IDEAS
- Ruth Milkereit & Avinash Persaud & Liviu Vanoaica & Adriano Guetg & Francois Verrey & Daniela Rotin, 2015. "LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nick Huang & Thomas Winans & Brandon Wyman & Zachary Oaks & Tamas Faludi & Gourav Choudhary & Zhi-Wei Lai & Joshua Lewis & Miguel Beckford & Manuel Duarte & Daniel Krakko & Akshay Patel & Joy Park & T, 2024. "Rab4A-directed endosome traffic shapes pro-inflammatory mitochondrial metabolism in T cells via mitophagy, CD98 expression, and kynurenine-sensitive mTOR activation," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
- Yandan Yang & Arnold Bolomsky & Thomas Oellerich & Ping Chen & Michele Ceribelli & Björn Häupl & George W. Wright & James D. Phelan & Da Wei Huang & James W. Lord & Callie K. Winkle & Xin Yu & Jan Wis, 2022. "Oncogenic RAS commandeers amino acid sensing machinery to aberrantly activate mTORC1 in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Di Wu & Renhong Yan & Siyuan Song & Andrew K. Swansiger & Yaning Li & James S. Prell & Qiang Zhou & Carol V. Robinson, 2024. "The complete assembly of human LAT1-4F2hc complex provides insights into its regulation, function and localisation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Teena Bhakuni & Pieter R. Norden & Naoto Ujiie & Can Tan & Sun Kyong Lee & Thomas Tedeschi & Yi-Wen Hsieh & Ying Wang & Ting Liu & Amani A. Fawzi & Tsutomu Kume, 2024. "FOXC1 regulates endothelial CD98 (LAT1/4F2hc) expression in retinal angiogenesis and blood-retina barrier formation," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29124-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.