Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-28822-7
Download full text from publisher
References listed on IDEAS
- Ping Wang & Connor M. Wander & Chao-Xing Yuan & Michael S. Bereman & Todd J. Cohen, 2017. "Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
- Todd J. Cohen & Andrew W. Hwang & Clark R. Restrepo & Chao-Xing Yuan & John Q. Trojanowski & Virginia M. Y. Lee, 2015. "An acetylation switch controls TDP-43 function and aggregation propensity," Nature Communications, Nature, vol. 6(1), pages 1-13, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hong Zhang & Huazhang Guo & Danni Li & Yiling Zhang & Shengnan Zhang & Wenyan Kang & Cong Liu & Weidong Le & Liang Wang & Dan Li & Bin Dai, 2024. "Halogen doped graphene quantum dots modulate TDP-43 phase separation and aggregation in the nucleus," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Fang Wu & Natali H. Muskat & Inbar Dvilansky & Omri Koren & Anat Shahar & Roi Gazit & Natalie Elia & Eyal Arbely, 2023. "Acetylation-dependent coupling between G6PD activity and apoptotic signaling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rebecca San Gil & Dana Pascovici & Juliana Venturato & Heledd Brown-Wright & Prachi Mehta & Lidia Madrid San Martin & Jemma Wu & Wei Luan & Yi Kit Chui & Adekunle T. Bademosi & Shilpa Swaminathan & Se, 2024. "A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
- Severin Lechner & Raphael R. Steimbach & Longlong Wang & Marshall L. Deline & Yun-Chien Chang & Tobias Fromme & Martin Klingenspor & Patrick Matthias & Aubry K. Miller & Guillaume Médard & Bernhard Ku, 2023. "Chemoproteomic target deconvolution reveals Histone Deacetylases as targets of (R)-lipoic acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28822-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.