IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28787-7.html
   My bibliography  Save this article

High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury

Author

Listed:
  • Wei Li

    (University of Helsinki)

  • Jian Chen

    (The First Affiliated Hospital of Nanjing Medical University)

  • Shujie Zhao

    (The First Affiliated Hospital of Nanjing Medical University)

  • Tianhe Huang

    (China Pharmaceutical University)

  • Huiyan Ying

    (University of Helsinki)

  • Claudia Trujillo

    (University of Helsinki)

  • Giuseppina Molinaro

    (University of Helsinki)

  • Zheng Zhou

    (The First Affiliated Hospital of Nanjing Medical University)

  • Tao Jiang

    (The First Affiliated Hospital of Nanjing Medical University)

  • Wei Liu

    (The First Affiliated Hospital of Nanjing Medical University)

  • Linwei Li

    (The First Affiliated Hospital of Nanjing Medical University)

  • Yuancheng Bai

    (China Pharmaceutical University)

  • Peng Quan

    (University of Helsinki
    Shenyang Pharmaceutical University)

  • Yaping Ding

    (University of Helsinki)

  • Jouni Hirvonen

    (University of Helsinki)

  • Guoyong Yin

    (The First Affiliated Hospital of Nanjing Medical University)

  • Hélder A. Santos

    (University of Helsinki
    University of Helsinki
    University Medical Center Groningen/University of Groningen)

  • Jin Fan

    (The First Affiliated Hospital of Nanjing Medical University)

  • Dongfei Liu

    (University of Helsinki
    China Pharmaceutical University
    University of Helsinki)

Abstract

Drug delivery systems with high content of drug can minimize excipients administration, reduce side effects, improve therapeutic efficacy and/or promote patient compliance. However, engineering such systems is extremely challenging, as their loading capacity is inherently limited by the compatibility between drug molecules and carrier materials. To mitigate the drug-carrier compatibility limitation towards therapeutics encapsulation, we developed a sequential solidification strategy. In this strategy, the precisely controlled diffusion of solvents from droplets ensures the fast in-droplet precipitation of drug molecules prior to the solidification of polymer materials. After polymer solidification, a mass of drug nanoparticles is embedded in the polymer matrix, forming a nano-in-micro structured microsphere. All the obtained microspheres exhibit long-term storage stability, controlled release of drug molecules, and most importantly, high mass fraction of therapeutics (21.8–63.1 wt%). Benefiting from their high drug loading degree, the nano-in-micro structured acetalated dextran microspheres deliver a high dose of methylprednisolone (400 μg) within the limited administration volume (10 μL) by one single intrathecal injection. The amount of acetalated dextran used was 1/433 of that of low drug-loaded microspheres. Moreover, the controlled release of methylprednisolone from high drug-loaded microspheres contributes to improved therapeutic efficacy and reduced side effects than low drug-loaded microspheres and free drug in spinal cord injury therapy.

Suggested Citation

  • Wei Li & Jian Chen & Shujie Zhao & Tianhe Huang & Huiyan Ying & Claudia Trujillo & Giuseppina Molinaro & Zheng Zhou & Tao Jiang & Wei Liu & Linwei Li & Yuancheng Bai & Peng Quan & Yaping Ding & Jouni , 2022. "High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28787-7
    DOI: 10.1038/s41467-022-28787-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28787-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28787-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth J. Bradbury & Lawrence D. F. Moon & Reena J. Popat & Von R. King & Gavin S. Bennett & Preena N. Patel & James W. Fawcett & Stephen B. McMahon, 2002. "Chondroitinase ABC promotes functional recovery after spinal cord injury," Nature, Nature, vol. 416(6881), pages 636-640, April.
    2. Mark A. Anderson & Joshua E. Burda & Yilong Ren & Yan Ao & Timothy M. O’Shea & Riki Kawaguchi & Giovanni Coppola & Baljit S. Khakh & Timothy J. Deming & Michael V. Sofroniew, 2016. "Astrocyte scar formation aids central nervous system axon regeneration," Nature, Nature, vol. 532(7598), pages 195-200, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floriane Bretheau & Adrian Castellanos-Molina & Dominic Bélanger & Maxime Kusik & Benoit Mailhot & Ana Boisvert & Nicolas Vallières & Martine Lessard & Matthias Gunzer & Xiaoyu Liu & Éric Boilard & Ni, 2022. "The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    2. Myungsik Yoo & Muntasir Khaled & Kurt M Gibbs & Jonghun Kim & Björn Kowalewski & Thomas Dierks & Melitta Schachner, 2013. "Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-12, March.
    3. Christina Koupourtidou & Veronika Schwarz & Hananeh Aliee & Simon Frerich & Judith Fischer-Sternjak & Riccardo Bocchi & Tatiana Simon-Ebert & Xianshu Bai & Swetlana Sirko & Frank Kirchhoff & Martin Di, 2024. "Shared inflammatory glial cell signature after stab wound injury, revealed by spatial, temporal, and cell-type-specific profiling of the murine cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Vishnu Muraleedharan Saraswathy & Lili Zhou & Mayssa H. Mokalled, 2024. "Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Shannon Trombley & Jackson Powell & Pavithran Guttipatti & Andrew Matamoros & Xiaohui Lin & Tristan O’Harrow & Tobias Steinschaden & Leann Miles & Qin Wang & Shuchao Wang & Jingyun Qiu & Qingyang Li &, 2023. "Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Xiaojing Shi & Longlong Luo & Jixian Wang & Hui Shen & Yongfang Li & Muyassar Mamtilahun & Chang Liu & Rubing Shi & Joon-Hyuk Lee & Hengli Tian & Zhijun Zhang & Yongting Wang & Won-Suk Chung & Yaohui , 2021. "Stroke subtype-dependent synapse elimination by reactive gliosis in mice," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    7. Julia Kolb & Vasiliki Tsata & Nora John & Kyoohyun Kim & Conrad Möckel & Gonzalo Rosso & Veronika Kurbel & Asha Parmar & Gargi Sharma & Kristina Karandasheva & Shada Abuhattum & Olga Lyraki & Timon Be, 2023. "Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    8. Wenlu Li & Emiri T. Mandeville & Violeta Durán-Laforet & Norito Fukuda & Zhanyang Yu & Yi Zheng & Aaron Held & Ji-Hyun Park & Takafumi Nakano & Masayoshi Tanaka & Jingfei Shi & Elga Esposito & Wanting, 2022. "Endothelial cells regulate astrocyte to neural progenitor cell trans-differentiation in a mouse model of stroke," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Valentina Cigliola & Adam Shoffner & Nutishia Lee & Jianhong Ou & Trevor J. Gonzalez & Jiaul Hoque & Clayton J. Becker & Yanchao Han & Grace Shen & Timothy D. Faw & Muhammad M. Abd-El-Barr & Shyni Var, 2023. "Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. T. M. O’Shea & Y. Ao & S. Wang & A. L. Wollenberg & J. H. Kim & R. A. Ramos Espinoza & A. Czechanski & L. G. Reinholdt & T. J. Deming & M. V. Sofroniew, 2022. "Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    11. Isaac Francos-Quijorna & Marina Sánchez-Petidier & Emily R. Burnside & Smaranda R. Badea & Abel Torres-Espin & Lucy Marshall & Fred Winter & Joost Verhaagen & Victoria Moreno-Manzano & Elizabeth J. Br, 2022. "Chondroitin sulfate proteoglycans prevent immune cell phenotypic conversion and inflammation resolution via TLR4 in rodent models of spinal cord injury," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    12. Yuyan Cheng & Yuqin Yin & Alice Zhang & Alexander M. Bernstein & Riki Kawaguchi & Kun Gao & Kyra Potter & Hui-Ya Gilbert & Yan Ao & Jing Ou & Catherine J. Fricano-Kugler & Jeffrey L. Goldberg & Zhigan, 2022. "Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28787-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.