IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28749-z.html
   My bibliography  Save this article

Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis

Author

Listed:
  • Diego Sáenz de Urturi

    (University of the Basque Country UPV/EHU)

  • Xabier Buqué

    (University of the Basque Country UPV/EHU
    Biocruces Bizkaia Health Research Institute)

  • Begoña Porteiro

    (University of Santiago de Compostela-Instituto de Investigación Sanitaria)

  • Cintia Folgueira

    (Centro Nacional de Investigaciones Cardiovasculares (CNIC))

  • Alfonso Mora

    (Centro Nacional de Investigaciones Cardiovasculares (CNIC))

  • Teresa C. Delgado

    (CIC bioGUNE-BRTA (Basque Research & Technology Alliance))

  • Endika Prieto-Fernández

    (University of the Basque Country UPV/EHU)

  • Paula Olaizola

    (University of the Basque Country (UPV/EHU))

  • Beatriz Gómez-Santos

    (University of the Basque Country UPV/EHU)

  • Maider Apodaka-Biguri

    (University of the Basque Country UPV/EHU)

  • Francisco González-Romero

    (University of the Basque Country UPV/EHU)

  • Ane Nieva-Zuluaga

    (University of the Basque Country UPV/EHU)

  • Mikel Ruiz de Gauna

    (University of the Basque Country UPV/EHU)

  • Naroa Goikoetxea-Usandizaga

    (CIC bioGUNE-BRTA (Basque Research & Technology Alliance))

  • Juan Luis García-Rodríguez

    (University of the Basque Country UPV/EHU)

  • Virginia Gutierrez de Juan

    (CIC bioGUNE-BRTA (Basque Research & Technology Alliance))

  • Igor Aurrekoetxea

    (University of the Basque Country UPV/EHU
    Biocruces Bizkaia Health Research Institute)

  • Valle Montalvo-Romeral

    (Centro Nacional de Investigaciones Cardiovasculares (CNIC))

  • Eva M. Novoa

    (University of Santiago de Compostela-Instituto de Investigación Sanitaria)

  • Idoia Martín-Guerrero

    (University of the Basque Country UPV/EHU)

  • Marta Varela-Rey

    (CIC bioGUNE-BRTA (Basque Research & Technology Alliance)
    National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III)
    University of Santiago de Compostela-Instituto de Investigación Sanitaria)

  • Sanjay Bhanot

    (IONIS Pharmaceuticals)

  • Richard Lee

    (IONIS Pharmaceuticals)

  • Jesus M. Banales

    (University of the Basque Country (UPV/EHU)
    National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III)
    Ikerbasque, Basque Foundation for Science
    University of Navarra)

  • Wing-Kin Syn

    (University of the Basque Country UPV/EHU
    Ralph H Johnson, VAMC
    Medical University of South Carolina)

  • Guadalupe Sabio

    (Centro Nacional de Investigaciones Cardiovasculares (CNIC))

  • María L. Martínez-Chantar

    (CIC bioGUNE-BRTA (Basque Research & Technology Alliance)
    National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III))

  • Rubén Nogueiras

    (University of Santiago de Compostela-Instituto de Investigación Sanitaria
    CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)
    Galician Agency of Investigation)

  • Patricia Aspichueta

    (University of the Basque Country UPV/EHU
    Biocruces Bizkaia Health Research Institute
    National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III))

Abstract

Altered methionine metabolism is associated with weight gain in obesity. The methionine adenosyltransferase (MAT), catalyzing the first reaction of the methionine cycle, plays an important role regulating lipid metabolism. However, its role in obesity, when a plethora of metabolic diseases occurs, is still unknown. By using antisense oligonucleotides (ASO) and genetic depletion of Mat1a, here, we demonstrate that Mat1a deficiency in diet-induce obese or genetically obese mice prevented and reversed obesity and obesity-associated insulin resistance and hepatosteatosis by increasing energy expenditure in a hepatocyte FGF21 dependent fashion. The increased NRF2-mediated FGF21 secretion induced by targeting Mat1a, mobilized plasma lipids towards the BAT to be catabolized, induced thermogenesis and reduced body weight, inhibiting hepatic de novo lipogenesis. The beneficial effects of Mat1a ASO were abolished following FGF21 depletion in hepatocytes. Thus, targeting Mat1a activates the liver-BAT axis by increasing NRF2-mediated FGF21 secretion, which prevents obesity, insulin resistance and hepatosteatosis.

Suggested Citation

  • Diego Sáenz de Urturi & Xabier Buqué & Begoña Porteiro & Cintia Folgueira & Alfonso Mora & Teresa C. Delgado & Endika Prieto-Fernández & Paula Olaizola & Beatriz Gómez-Santos & Maider Apodaka-Biguri &, 2022. "Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28749-z
    DOI: 10.1038/s41467-022-28749-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28749-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28749-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Kraus & Qin Yang & Dong Kong & Alexander S. Banks & Lin Zhang & Joseph T. Rodgers & Eija Pirinen & Thomas C. Pulinilkunnil & Fengying Gong & Ya-chin Wang & Yana Cen & Anthony A. Sauve & John M., 2014. "Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity," Nature, Nature, vol. 508(7495), pages 258-262, April.
    2. Matthew D. Hirschey & Tadahiro Shimazu & Eric Goetzman & Enxuan Jing & Bjoern Schwer & David B. Lombard & Carrie A. Grueter & Charles Harris & Sudha Biddinger & Olga R. Ilkayeva & Robert D. Stevens & , 2010. "SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation," Nature, Nature, vol. 464(7285), pages 121-125, March.
    3. Lucía Barbier-Torres & Karen A. Fortner & Paula Iruzubieta & Teresa C. Delgado & Emily Giddings & Youdinghuan Chen & Devin Champagne & David Fernández-Ramos & Daniela Mestre & Beatriz Gomez-Santos & M, 2020. "Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gloria Ursino & Giorgio Ramadori & Anna Höfler & Soline Odouard & Pryscila D. S. Teixeira & Florian Visentin & Christelle Veyrat-Durebex & Giulia Lucibello & Raquel Firnkes & Serena Ricci & Claudia R., 2022. "Hepatic non-parenchymal S100A9-TLR4-mTORC1 axis normalizes diabetic ketogenesis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Rin Mizuno & Hiroaki Hojo & Masatomo Takahashi & Soshiro Kashio & Sora Enya & Motonao Nakao & Riyo Konishi & Mayuko Yoda & Ayano Harata & Junzo Hamanishi & Hiroshi Kawamoto & Masaki Mandai & Yutaka Su, 2022. "Remote solid cancers rewire hepatic nitrogen metabolism via host nicotinamide-N-methyltransferase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Evangelia Lekka & Aleksandra Kokanovic & Simone Mosole & Gianluca Civenni & Sandro Schmidli & Artur Laski & Alice Ghidini & Pavithra Iyer & Christian Berk & Alok Behera & Carlo V. Catapano & Jonathan , 2022. "Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28749-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.