IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28660-7.html
   My bibliography  Save this article

Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly

Author

Listed:
  • Yong Xu

    (University of Leeds)

  • Roberto Maya-Martinez

    (University of Leeds)

  • Nicolas Guthertz

    (University of Leeds)

  • George R. Heath

    (University of Leeds)

  • Iain W. Manfield

    (University of Leeds)

  • Alexander L. Breeze

    (University of Leeds)

  • Frank Sobott

    (University of Leeds)

  • Richard Foster

    (University of Leeds)

  • Sheena E. Radford

    (University of Leeds)

Abstract

Human islet amyloid polypeptide (hIAPP) self-assembles into amyloid fibrils which deposit in pancreatic islets of type 2 diabetes (T2D) patients. Here, we applied chemical kinetics to study the mechanism of amyloid assembly of wild-type hIAPP and its more amyloidogenic natural variant S20G. We show that the aggregation of both peptides involves primary nucleation, secondary nucleation and elongation. We also report the discovery of two structurally distinct small-molecule modulators of hIAPP assembly, one delaying the aggregation of wt hIAPP, but not S20G; while the other enhances the rate of aggregation of both variants at substoichiometric concentrations. Investigation into the inhibition mechanism(s) using chemical kinetics, native mass spectrometry, fluorescence titration, SPR and NMR revealed that the inhibitor retards primary nucleation, secondary nucleation and elongation, by binding peptide monomers. By contrast, the accelerator predominantly interacts with species formed in the lag phase. These compounds represent useful chemical tools to study hIAPP aggregation and may serve as promising starting-points for the development of therapeutics for T2D.

Suggested Citation

  • Yong Xu & Roberto Maya-Martinez & Nicolas Guthertz & George R. Heath & Iain W. Manfield & Alexander L. Breeze & Frank Sobott & Richard Foster & Sheena E. Radford, 2022. "Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28660-7
    DOI: 10.1038/s41467-022-28660-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28660-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28660-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan Limbocker & Sean Chia & Francesco S. Ruggeri & Michele Perni & Roberta Cascella & Gabriella T. Heller & Georg Meisl & Benedetta Mannini & Johnny Habchi & Thomas C. T. Michaels & Pavan K. Challa &, 2019. "Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Wirth & Fabrice D. Heitz & Christine Seeger & Ioana Combaluzier & Karin Breu & Heather C. Denroche & Julien Thevenet & Melania Osto & Paolo Arosio & Julie Kerr-Conte & C. Bruce Verchere & Franç, 2023. "A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. V. S. Manu & Cristina Olivieri & Gianluigi Veglia, 2023. "AI-designed NMR spectroscopy RF pulses for fast acquisition at high and ultra-high magnetic fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28660-7. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.