IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28182-2.html
   My bibliography  Save this article

Topological dislocation modes in three-dimensional acoustic topological insulators

Author

Listed:
  • Liping Ye

    (Wuhan University)

  • Chunyin Qiu

    (Wuhan University)

  • Meng Xiao

    (Wuhan University)

  • Tianzi Li

    (Wuhan University)

  • Juan Du

    (Wuhan University)

  • Manzhu Ke

    (Wuhan University)

  • Zhengyou Liu

    (Wuhan University
    Wuhan University)

Abstract

Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences have been presented for this intriguing topological observable in solid-state systems, owing to the huge challenges in creating controllable dislocations and conclusively identifying topological signals. Here, using a three-dimensional acoustic weak topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented control over wave propagations.

Suggested Citation

  • Liping Ye & Chunyin Qiu & Meng Xiao & Tianzi Li & Juan Du & Manzhu Ke & Zhengyou Liu, 2022. "Topological dislocation modes in three-dimensional acoustic topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28182-2
    DOI: 10.1038/s41467-022-28182-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28182-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28182-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lun-Hui Hu & Rui-Xing Zhang, 2024. "Dislocation Majorana bound states in iron-based superconductors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jingwen Ma & Ding Jia & Li Zhang & Yi-jun Guan & Yong Ge & Hong-xiang Sun & Shou-qi Yuan & Hongsheng Chen & Yihao Yang & Xiang Zhang, 2024. "Observation of vortex-string chiral modes in metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28182-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.