IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28160-8.html
   My bibliography  Save this article

Global climate-driven trade-offs between the water retention and cooling benefits of urban greening

Author

Listed:
  • M. O. Cuthbert

    (Cardiff University
    The University of New South Wales)

  • G. C. Rau

    (Karlsruhe Institute of Technology)

  • M. Ekström

    (Cardiff University)

  • D. M. O’Carroll

    (The University of New South Wales)

  • A. J. Bates

    (Nottingham Trent University)

Abstract

Urban greening can potentially help mitigate heat-related mortality and flooding facing the >4 billion urban population worldwide. However, the geographical variation of the relative combined hydrological and thermal performance benefits of such interventions are unknown. Here we quantify globally, using a hydrological model, how climate-driven trade-offs exist between hydrological retention and cooling potential of urban greening such as green roofs and parks. Using a Budyko framework, we show that water retention generally increases with aridity in water-limited environments, while cooling potential favors energy-limited climates. Our models suggest that common urban greening strategies cannot yield high performance simultaneously for addressing both urban heat-island and urban flooding problems in most cities globally. Irrigation, if sustainable, may enhance cooling while maintaining retention performance in more arid locations. Increased precipitation variability with climate change may reduce performance of thinner green-infrastructure more quickly compared to greened areas with thicker soils and root systems. Our results provide a conceptual framework and first-order quantitative guide for urban development, renewal and policymaking.

Suggested Citation

  • M. O. Cuthbert & G. C. Rau & M. Ekström & D. M. O’Carroll & A. J. Bates, 2022. "Global climate-driven trade-offs between the water retention and cooling benefits of urban greening," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28160-8
    DOI: 10.1038/s41467-022-28160-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28160-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28160-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Taotao & Kong, Fanhua & Yin, Haiwei & Cook, Lauren M. & Middel, Ariane & Yang, Shaoqi, 2023. "Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28160-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.