IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28155-5.html
   My bibliography  Save this article

Liquid-microjet photoelectron spectroscopy of the green fluorescent protein chromophore

Author

Listed:
  • Omri Tau

    (University College London)

  • Alice Henley

    (University College London)

  • Anton N. Boichenko

    (Lomonosov Moscow State University)

  • Nadezhda N. Kleshchina

    (Lomonosov Moscow State University)

  • River Riley

    (University College London)

  • Bingxing Wang

    (University College London
    Henan Institute of Science and Technology)

  • Danielle Winning

    (University College London)

  • Ross Lewin

    (University College London)

  • Ivan P. Parkin

    (University College London)

  • John M. Ward

    (Department of Biochemical Engineering, University College London)

  • Helen C. Hailes

    (University College London)

  • Anastasia V. Bochenkova

    (Lomonosov Moscow State University)

  • Helen H. Fielding

    (University College London)

Abstract

Green fluorescent protein (GFP), the most widely used fluorescent protein for in vivo monitoring of biological processes, is known to undergo photooxidation reactions. However, the most fundamental property underpinning photooxidation, the electron detachment energy, has only been measured for the deprotonated GFP chromophore in the gas phase. Here, we use multiphoton ultraviolet photoelectron spectroscopy in a liquid-microjet and high-level quantum chemistry calculations to determine the electron detachment energy of the GFP chromophore in aqueous solution. The aqueous environment is found to raise the detachment energy by around 4 eV compared to the gas phase, similar to calculations of the chromophore in its native protein environment. In most cases, electron detachment is found to occur resonantly through electronically excited states of the chromophore, highlighting their importance in photo-induced electron transfer processes in the condensed phase. Our results suggest that the photooxidation properties of the GFP chromophore in an aqueous environment will be similar to those in the protein.

Suggested Citation

  • Omri Tau & Alice Henley & Anton N. Boichenko & Nadezhda N. Kleshchina & River Riley & Bingxing Wang & Danielle Winning & Ross Lewin & Ivan P. Parkin & John M. Ward & Helen C. Hailes & Anastasia V. Boc, 2022. "Liquid-microjet photoelectron spectroscopy of the green fluorescent protein chromophore," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28155-5
    DOI: 10.1038/s41467-022-28155-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28155-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28155-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Dickson & Andrew B. Cubitt & Roger Y. Tsien & W. E. Moerner, 1997. "On/off blinking and switching behaviour of single molecules of green fluorescent protein," Nature, Nature, vol. 388(6640), pages 355-358, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Annibale & Stefano Vanni & Marco Scarselli & Ursula Rothlisberger & Aleksandra Radenovic, 2011. "Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-8, July.
    2. Anchal Srivastava & R K Shukla & Nishant Kumar & Anu Katiyar, 2017. "Nanoparticles as Biomarkers and Biosensors," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 9(3), pages 43-46, September.
    3. Tatsuya Morisaki & James G McNally, 2014. "Photoswitching-Free FRAP Analysis with a Genetically Encoded Fluorescent Tag," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    4. Atanu Maiti & Cosmo Z. Buffalo & Saumya Saurabh & Felipe Montecinos-Franjola & Justin S. Hachey & William J. Conlon & Geraldine N. Tran & Bakar Hassan & Kylie J. Walters & Mikhail Drobizhev & W. E. Mo, 2023. "Structural and photophysical characterization of the small ultra-red fluorescent protein," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28155-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.