IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28037-w.html
   My bibliography  Save this article

Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes

Author

Listed:
  • Qiang Su

    (Southern University of Science and Technology)

  • Shuming Chen

    (Southern University of Science and Technology
    Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education)

Abstract

Up-conversion electroluminescence, in which the energy of a emitted photon is higher than that of the excitation electron, is observed in quantum-dot light-emitting diodes. Here, we study its mechanism by investigating the effect of thermal energy on the charge injection dynamic. Based on the results of temperature-dependent electroluminescence and theoretical analysis, we reveal that at sub-bandgap voltage, holes can be successfully injected into quantum-dots via thermal-assisted thermionic-emission mechanism, thereby enabling the sub-bandgap turn-on and up-conversion electroluminescence of the devices. Further theoretical deduction and experimental results confirm that thermal-assisted hole-injection is the universal mechanism responsible for the up-conversion electroluminescence. This work uncovers the charge injection process and unlocks the sub-bandgap turn-on mechanism, which paves the road for the development of up-conversion devices with power conversion efficiency over 100%.

Suggested Citation

  • Qiang Su & Shuming Chen, 2022. "Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28037-w
    DOI: 10.1038/s41467-022-28037-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28037-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28037-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Luo & Fan-Fang Kong & Xiao-Jun Tian & Yun-Jie Yu & Shi-Hao Jing & Chao Zhang & Gong Chen & Yang Zhang & Yao Zhang & Xiao-Guang Li & Zhen-Yu Zhang & Zhen-Chao Dong, 2024. "Anomalously bright single-molecule upconversion electroluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Wenjing Zhang & Bo Li & Chun Chang & Fei Chen & Qin Zhang & Qingli Lin & Lei Wang & Jinhang Yan & Fangfang Wang & Yihua Chong & Zuliang Du & Fengjia Fan & Huaibin Shen, 2024. "Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Yaxiao Lian & Dongchen Lan & Shiyu Xing & Bingbing Guo & Zhixiang Ren & Runchen Lai & Chen Zou & Baodan Zhao & Richard H. Friend & Dawei Di, 2022. "Ultralow-voltage operation of light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28037-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.