IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-27967-9.html
   My bibliography  Save this article

High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation

Author

Listed:
  • Miglė Kišonaitė

    (Biochemiezentrum der Universität Heidelberg (BZH), INF328)

  • Klemens Wild

    (Biochemiezentrum der Universität Heidelberg (BZH), INF328)

  • Karine Lapouge

    (Biochemiezentrum der Universität Heidelberg (BZH), INF328)

  • Thomas Ruppert

    (Zentrum für Molekulare Biologie der Universität Heidelberg, INF282)

  • Irmgard Sinning

    (Biochemiezentrum der Universität Heidelberg (BZH), INF328)

Abstract

Ribosomes are complex and highly conserved ribonucleoprotein assemblies catalyzing protein biosynthesis in every organism. Here we present high-resolution cryo-EM structures of the 80S ribosome from a thermophilic fungus in two rotational states, which due to increased 80S stability provide a number of mechanistic details of eukaryotic translation. We identify a universally conserved ‘nested base-triple knot’ in the 26S rRNA at the polypeptide tunnel exit with a bulged-out nucleotide that likely serves as an adaptable element for nascent chain containment and handover. We visualize the structure and dynamics of the ribosome protective factor Stm1 upon ribosomal 40S head swiveling. We describe the structural impact of a unique and essential m1acp3 Ψ 18S rRNA hyper-modification embracing the anticodon wobble-position for eukaryotic tRNA and mRNA translocation. We complete the eEF2-GTPase switch cycle describing the GDP-bound post-hydrolysis state. Taken together, our data and their integration into the structural landscape of 80S ribosomes furthers our understanding of protein biogenesis.

Suggested Citation

  • Miglė Kišonaitė & Klemens Wild & Karine Lapouge & Thomas Ruppert & Irmgard Sinning, 2022. "High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-27967-9
    DOI: 10.1038/s41467-022-27967-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-27967-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-27967-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jailson Brito Querido & Masaaki Sokabe & Irene Díaz-López & Yuliya Gordiyenko & Philipp Zuber & Yifei Du & Lucas Albacete-Albacete & V. Ramakrishnan & Christopher S. Fraser, 2024. "Human tumor suppressor protein Pdcd4 binds at the mRNA entry channel in the 40S small ribosomal subunit," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Marius A. Klein & Klemens Wild & Miglė Kišonaitė & Irmgard Sinning, 2024. "Methionine aminopeptidase 2 and its autoproteolysis product have different binding sites on the ribosome," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yan Chen & Bin Tsai & Ningning Li & Ning Gao, 2022. "Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Marius Klein & Klemens Wild & Irmgard Sinning, 2024. "Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-27967-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.