IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27708-4.html
   My bibliography  Save this article

Chirality transmission in macromolecular domains

Author

Listed:
  • Shankar Pandey

    (Kent State University)

  • Shankar Mandal

    (Kent State University)

  • Mathias Bogetoft Danielsen

    (University of Southern Denmark)

  • Asha Brown

    (ATDBio Ltd., Magdalen Centre, Oxford Science Park)

  • Changpeng Hu

    (Kent State University)

  • Niels Johan Christensen

    (University of Copenhagen)

  • Alina Vitaliyivna Kulakova

    (University of Copenhagen)

  • Shixi Song

    (University of Southern Denmark)

  • Tom Brown

    (University of Oxford)

  • Knud J. Jensen

    (University of Copenhagen)

  • Jesper Wengel

    (University of Southern Denmark)

  • Chenguang Lou

    (University of Southern Denmark)

  • Hanbin Mao

    (Kent State University)

Abstract

Chiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (

Suggested Citation

  • Shankar Pandey & Shankar Mandal & Mathias Bogetoft Danielsen & Asha Brown & Changpeng Hu & Niels Johan Christensen & Alina Vitaliyivna Kulakova & Shixi Song & Tom Brown & Knud J. Jensen & Jesper Wenge, 2022. "Chirality transmission in macromolecular domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27708-4
    DOI: 10.1038/s41467-021-27708-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27708-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27708-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Neel & Margaret J. Hilton & Matthew S. Sigman & F. Dean Toste, 2017. "Exploiting non-covalent π interactions for catalyst design," Nature, Nature, vol. 543(7647), pages 637-646, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deepak Karna & Eriko Mano & Jiahao Ji & Ibuki Kawamata & Yuki Suzuki & Hanbin Mao, 2023. "Chemo-mechanical forces modulate the topology dynamics of mesoscale DNA assemblies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jana Bocková & Nykola C. Jones & Jérémie Topin & Søren V. Hoffmann & Cornelia Meinert, 2023. "Uncovering the chiral bias of meteoritic isovaline through asymmetric photochemistry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zhentao Sang & Lu Xu & Renyu Ding & Minjun Wang & Xiaoran Yang & Xitan Li & Bingxin Zhou & Kaijun Gou & Yang Han & Tingting Liu & Xuchun Chen & Ying Cheng & Huazhe Yang & Heran Li, 2023. "Nanoparticles exhibiting virus-mimic surface topology for enhanced oral delivery," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meihui Liu & Xiao Han & Hao Chen & Qian Peng & Hui Huang, 2023. "A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27708-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.