Author
Listed:
- Yinan Hu
(Huazhong University of Science and Technology
China-Japan Friendship Hospital)
- Qi Wang
(Huazhong University of Science and Technology)
- Jun Yu
(Huazhong University of Science and Technology)
- Qing Zhou
(Huazhong University of Science and Technology)
- Yanhan Deng
(Huazhong University of Science and Technology)
- Juan Liu
(Huazhong University of Science and Technology)
- Lei Zhang
(Huazhong University of Science and Technology)
- Yongjian Xu
(Huazhong University of Science and Technology)
- Weining Xiong
(Huazhong University of Science and Technology
Shanghai Jiaotong University School of Medicine)
- Yi Wang
(Huazhong University of Science and Technology)
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Tartrate-resistant acid phosphatase 5 (ACP5) performs a variety of functions. However, its role in IPF remains unclear. Here, we demonstrate that the levels of ACP5 are increased in IPF patient samples and mice with bleomycin (BLM)-induced pulmonary fibrosis. In particular, higher levels of ACP5 are present in the sera of IPF patients with a diffusing capacity of the lungs for carbonmonoxide (DLCO) less than 40% of the predicted value. Additionally, Acp5 deficiency protects mice from BLM-induced lung injury and fibrosis coupled with a significant reduction of fibroblast differentiation and proliferation. Mechanistic studies reveal that Acp5 is upregulated by transforming growth factor-β1 (TGF-β1) in a TGF-β receptor 1 (TGFβR1)/Smad family member 3 (Smad3)-dependent manner, after which Acp5 dephosphorylates p-β-catenin at serine 33 and threonine 41, inhibiting the degradation of β-catenin and subsequently enhancing β-catenin signaling in the nucleus, which promotes the differentiation, proliferation and migration of fibroblast. More importantly, the treatment of mice with Acp5 siRNA-loaded liposomes or Acp5 inhibitor reverses established lung fibrosis. In conclusions, Acp5 is involved in the initiation and progression of pulmonary fibrosis and strategies aimed at silencing or suppressing Acp5 could be considered as potential therapeutic approaches against pulmonary fibrosis.
Suggested Citation
Yinan Hu & Qi Wang & Jun Yu & Qing Zhou & Yanhan Deng & Juan Liu & Lei Zhang & Yongjian Xu & Weining Xiong & Yi Wang, 2022.
"Tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis by modulating β-catenin signaling,"
Nature Communications, Nature, vol. 13(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27684-9
DOI: 10.1038/s41467-021-27684-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27684-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.