IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27457-4.html
   My bibliography  Save this article

Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel

Author

Listed:
  • Parul Verma

    (Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur)

  • Ashish Singh

    (Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur)

  • Faruk Ahamed Rahimi

    (Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur)

  • Pallavi Sarkar

    (Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur)

  • Sukhendu Nath

    (Bhabha Atomic Research Centre)

  • Swapan Kumar Pati

    (Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur)

  • Tapas Kumar Maji

    (Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur)

Abstract

The much-needed renewable alternatives to fossil fuel can be achieved efficiently and sustainably by converting solar energy to fuels via hydrogen generation from water or CO2 reduction. Herein, a soft processable metal-organic hybrid material is developed and studied for photocatalytic activity towards H2 production and CO2 reduction to CO and CH4 under visible light as well as direct sunlight irradiation. A tetrapodal low molecular weight gelator (LMWG) is synthesized by integrating tetrathiafulvalene (TTF) and terpyridine (TPY) derivatives through amide linkages and results in TPY-TTF LMWG. The TPY-TTF LMWG acts as a linker, and self-assembly of this gelator molecules with ZnII ions results in a coordination polymer gel (CPG); Zn-TPY-TTF. The Zn-TPY-TTF CPG shows high photocatalytic activity towards H2 production (530 μmol g−1h−1) and CO2 reduction to CO (438 μmol g−1h−1, selectivity > 99%) regulated by charge-transfer interactions. Furthermore, in situ stabilization of Pt nanoparticles on CPG (Pt@Zn-TPY-TTF) enhances H2 evolution (14727 μmol g−1h−1). Importantly, Pt@Zn-TPY-TTF CPG produces CH4 (292 μmol g−1h−1, selectivity > 97%) as CO2 reduction product instead of CO. The real-time CO2 reduction reaction is monitored by in situ DRIFT study, and the plausible mechanism is derived computationally.

Suggested Citation

  • Parul Verma & Ashish Singh & Faruk Ahamed Rahimi & Pallavi Sarkar & Sukhendu Nath & Swapan Kumar Pati & Tapas Kumar Maji, 2021. "Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27457-4
    DOI: 10.1038/s41467-021-27457-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27457-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27457-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanchita Karmakar & Soumitra Barman & Faruk Ahamed Rahimi & Darsi Rambabu & Sukhendu Nath & Tapas Kumar Maji, 2023. "Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Hui Li & Caikun Cheng & Zhijie Yang & Jingjing Wei, 2022. "Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27457-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.