IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27365-7.html
   My bibliography  Save this article

Lipid droplet availability affects neural stem/progenitor cell metabolism and proliferation

Author

Listed:
  • Mergim Ramosaj

    (University of Lausanne)

  • Sofia Madsen

    (University of Lausanne)

  • Vanille Maillard

    (University of Lausanne)

  • Valentina Scandella

    (University of Lausanne)

  • Daniel Sudria-Lopez

    (University of Lausanne)

  • Naoya Yuizumi

    (The University of Tokyo)

  • Ludovic Telley

    (University of Lausanne)

  • Marlen Knobloch

    (University of Lausanne)

Abstract

Neural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour.

Suggested Citation

  • Mergim Ramosaj & Sofia Madsen & Vanille Maillard & Valentina Scandella & Daniel Sudria-Lopez & Naoya Yuizumi & Ludovic Telley & Marlen Knobloch, 2021. "Lipid droplet availability affects neural stem/progenitor cell metabolism and proliferation," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27365-7
    DOI: 10.1038/s41467-021-27365-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27365-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27365-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Semir Beyaz & Miyeko D. Mana & Jatin Roper & Dmitriy Kedrin & Assieh Saadatpour & Sue-Jean Hong & Khristian E. Bauer-Rowe & Michael E. Xifaras & Adam Akkad & Erika Arias & Luca Pinello & Yarden Katz &, 2016. "High-fat diet enhances stemness and tumorigenicity of intestinal progenitors," Nature, Nature, vol. 531(7592), pages 53-58, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dianne Lumaquin-Yin & Emily Montal & Eleanor Johns & Arianna Baggiolini & Ting-Hsiang Huang & Yilun Ma & Charlotte LaPlante & Shruthy Suresh & Lorenz Studer & Richard M. White, 2023. "Lipid droplets are a metabolic vulnerability in melanoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Marco Luciani & Chiara Garsia & Stefano Beretta & Ingrid Cifola & Clelia Peano & Ivan Merelli & Luca Petiti & Annarita Miccio & Vasco Meneghini & Angela Gritti, 2024. "Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Sofia Madsen & Ana C. Delgado & Christelle Cadilhac & Vanille Maillard & Fabrice Battiston & Carla Marie Igelbüscher & Simon De Neck & Elia Magrinelli & Denis Jabaudon & Ludovic Telley & Fiona Doetsch, 2024. "A fluorescent perilipin 2 knock-in mouse model reveals a high abundance of lipid droplets in the developing and adult brain," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Lingxiu Kong & Qingjie Bai & Cuicui Li & Qiqin Wang & Yanfeng Wang & Xintian Shao & Yongchun Wei & Jiarao Sun & Zhenjie Yu & Junling Yin & Bin Shi & Hongbao Fang & Xiaoyuan Chen & Qixin Chen, 2024. "Molecular probes for tracking lipid droplet membrane dynamics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanying Wang & Jing Wang & Xiaoyu Li & Xushen Xiong & Jianyi Wang & Ziheng Zhou & Xiaoxiao Zhu & Yang Gu & Dan Dominissini & Lei He & Yong Tian & Chengqi Yi & Zusen Fan, 2021. "N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Shuting Li & Chia-Wen Lu & Elia C. Diem & Wang Li & Melanie Guderian & Marc Lindenberg & Friederike Kruse & Manuela Buettner & Stefan Floess & Markus R. Winny & Robert Geffers & Hans-Hermann Richnow &, 2022. "Acetyl-CoA-Carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5+ intestinal stem cell function," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Carlos Sebastian & Christina Ferrer & Maria Serra & Jee-Eun Choi & Nadia Ducano & Alessia Mira & Manasvi S. Shah & Sylwia A. Stopka & Andrew J. Perciaccante & Claudio Isella & Daniel Moya-Rull & Maria, 2022. "A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Alfredo Erazo-Oliveras & Mónica Muñoz-Vega & Mohamed Mlih & Venkataramana Thiriveedi & Michael L. Salinas & Jaileen M. Rivera-Rodríguez & Eunjoo Kim & Rachel C. Wright & Xiaoli Wang & Kerstin K. Landr, 2023. "Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    5. Ozren Stojanović & Jordi Altirriba & Dorothée Rigo & Martina Spiljar & Emilien Evrard & Benedek Roska & Salvatore Fabbiano & Nicola Zamboni & Pierre Maechler & Françoise Rohner-Jeanrenaud & Mirko Traj, 2021. "Dietary excess regulates absorption and surface of gut epithelium through intestinal PPARα," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27365-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.