IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27155-1.html
   My bibliography  Save this article

Plant LHC-like proteins show robust folding and static non-photochemical quenching

Author

Listed:
  • Petra Skotnicová

    (Institute of Microbiology, Academy of Sciences of the Czech Republic)

  • Hristina Staleva-Musto

    (University of South Bohemia)

  • Valentyna Kuznetsova

    (University of South Bohemia)

  • David Bína

    (University of South Bohemia
    Biology Centre, Institute of Plant Molecular Biology, Academy of Sciences of the Czech Republic)

  • Minna M. Konert

    (Institute of Microbiology, Academy of Sciences of the Czech Republic)

  • Shan Lu

    (School of Life Sciences, Nanjing University)

  • Tomáš Polívka

    (University of South Bohemia
    Biology Centre, Institute of Plant Molecular Biology, Academy of Sciences of the Czech Republic)

  • Roman Sobotka

    (Institute of Microbiology, Academy of Sciences of the Czech Republic)

Abstract

Life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)—abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. How pigments associated with LHC-like proteins are organised and how they contribute to protein function has not yet been determined. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.

Suggested Citation

  • Petra Skotnicová & Hristina Staleva-Musto & Valentyna Kuznetsova & David Bína & Minna M. Konert & Shan Lu & Tomáš Polívka & Roman Sobotka, 2021. "Plant LHC-like proteins show robust folding and static non-photochemical quenching," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27155-1
    DOI: 10.1038/s41467-021-27155-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27155-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27155-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Snellenburg, Joris J. & Laptenok, Sergey & Seger, Ralf & Mullen, Katharine M. & van Stokkum, Ivo H. M., 2012. "Glotaran: A Java-Based Graphical User Interface for the R Package TIMP," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 49(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongseok Hong & Maximilian Rudolf & Munnyon Kim & Juno Kim & Tim Schembri & Ana-Maria Krause & Kazutaka Shoyama & David Bialas & Merle I. S. Röhr & Taiha Joo & Hyungjun Kim & Dongho Kim & Frank Würthn, 2022. "Steering the multiexciton generation in slip-stacked perylene dye array via exciton coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Wei Wen & Guocai Liu & Xiaofang Wei & Haojie Huang & Chong Wang & Danlei Zhu & Jianzhe Sun & Huijuan Yan & Xin Huang & Wenkang Shi & Xiaojuan Dai & Jichen Dong & Lang Jiang & Yunlong Guo & Hanlin Wang, 2024. "Biomimetic nanocluster photoreceptors for adaptative circular polarization vision," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Guiying He & Emily M. Churchill & Kaia R. Parenti & Jocelyn Zhang & Pournima Narayanan & Faridah Namata & Michael Malkoch & Daniel N. Congreve & Angelo Cacciuto & Matthew Y. Sfeir & Luis M. Campos, 2023. "Promoting multiexciton interactions in singlet fission and triplet fusion upconversion dendrimers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ana González Moreno & Abel Cózar & Pilar Prieto & Eva Domínguez & Antonio Heredia, 2022. "Radiationless mechanism of UV deactivation by cuticle phenolics in plants," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Valero-Mora, Pedro M. & Ledesma, Ruben, 2012. "Graphical User Interfaces for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 49(i01).
    6. Arita Silapetere & Songhwan Hwang & Yusaku Hontani & Rodrigo G. Fernandez Lahore & Jens Balke & Francisco Velazquez Escobar & Martijn Tros & Patrick E. Konold & Rainer Matis & Roberta Croce & Peter J., 2022. "QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Volha U. Chukhutsina & James M. Baxter & Alisia Fadini & Rhodri M. Morgan & Matthew A. Pope & Karim Maghlaoui & Christian M. Orr & Armin Wagner & Jasper J. Thor, 2022. "Light activation of Orange Carotenoid Protein reveals bicycle-pedal single-bond isomerization," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Claudia Pigliacelli & Angela Acocella & Isabel Díez & Luca Moretti & Valentina Dichiarante & Nicola Demitri & Hua Jiang & Margherita Maiuri & Robin H. A. Ras & Francesca Baldelli Bombelli & Giulio Cer, 2022. "High-resolution crystal structure of a 20 kDa superfluorinated gold nanocluster," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Mengyuan Zheng & Xiaojie Pang & Ming Chen & Lijin Tian, 2024. "Ultrafast energy quenching mechanism of LHCSR3-dependent photoprotection in Chlamydomonas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27155-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.