IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26993-3.html
   My bibliography  Save this article

Inhibition of cytoplasmic EZH2 induces antitumor activity through stabilization of the DLC1 tumor suppressor protein

Author

Listed:
  • Brajendra K. Tripathi

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

  • Meghan F. Anderman

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

  • Disha Bhargava

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

  • Luciarita Boccuzzi

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

  • Xiaolan Qian

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

  • Dunrui Wang

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

  • Marian E. Durkin

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

  • Alex G. Papageorge

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

  • Fernando J. Miguel

    (Yale Cancer Center, Yale School of Medicine)

  • Katerina Politi

    (Yale Cancer Center, Yale School of Medicine
    Yale School of Medicine)

  • Kylie J. Walters

    (Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute)

  • James H. Doroshow

    (Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute)

  • Douglas R. Lowy

    (Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute)

Abstract

mRNA expression of the DLC1 tumor suppressor gene is downregulated in many lung cancers and their derived cell lines, with DLC1 protein levels being low or absent. Although the role of increased EZH2 methyltransferase in cancer is usually attributed to its histone methylation, we unexpectedly observed that post-translational destabilization of DLC1 protein is common and attributable to its methylation by cytoplasmic EZH2, leading to CUL-4A ubiquitin-dependent proteasomal degradation of DLC1. Furthermore, siRNA knockdown of KRAS in several lines increases DLC1 protein, associated with a drastic reduction in cytoplasmic EZH2. Pharmacologic inhibition of EZH2, CUL-4A, or the proteasome can increase the steady-state level of DLC1 protein, whose tumor suppressor activity is further increased by AKT and/or SRC kinase inhibitors, which reverse the direct phosphorylation of DLC1 by these kinases. These rational drug combinations induce potent tumor growth inhibition, with markers of apoptosis and senescence, that is highly dependent on DLC1 protein.

Suggested Citation

  • Brajendra K. Tripathi & Meghan F. Anderman & Disha Bhargava & Luciarita Boccuzzi & Xiaolan Qian & Dunrui Wang & Marian E. Durkin & Alex G. Papageorge & Fernando J. Miguel & Katerina Politi & Kylie J. , 2021. "Inhibition of cytoplasmic EZH2 induces antitumor activity through stabilization of the DLC1 tumor suppressor protein," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26993-3
    DOI: 10.1038/s41467-021-26993-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26993-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26993-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Talha Anwar & Caroline Arellano-Garcia & James Ropa & Yu-Chih Chen & Hong Sun Kim & Euisik Yoon & Sierrah Grigsby & Venkatesha Basrur & Alexey I. Nesvizhskii & Andrew Muntean & Maria E. Gonzalez & Kel, 2018. "p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julie Rondeaux & Déborah Groussard & Sylvanie Renet & Virginie Tardif & Anaïs Dumesnil & Alphonse Chu & Léa Maria & Théo Lemarcis & Manon Valet & Jean-Paul Henry & Zina Badji & Claire Vézier & Delphin, 2023. "Ezh2 emerges as an epigenetic checkpoint regulator during monocyte differentiation limiting cardiac dysfunction post-MI," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Pauliina M. Munne & Lahja Martikainen & Iiris Räty & Kia Bertula & Nonappa & Janika Ruuska & Hanna Ala-Hongisto & Aino Peura & Babette Hollmann & Lilya Euro & Kerim Yavuz & Linda Patrikainen & Maria S, 2021. "Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Ayushi Verma & Akhilesh Singh & Manish Pratap Singh & Mushtaq Ahmad Nengroo & Krishan Kumar Saini & Saumya Ranjan Satrusal & Muqtada Ali Khan & Priyank Chaturvedi & Abhipsa Sinha & Sanjeev Meena & Anu, 2022. "EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    4. Nikhil B. Ghate & Sungmin Kim & Yonghwan Shin & Jinman Kim & Michael Doche & Scott Valena & Alan Situ & Sangnam Kim & Suhn K. Rhie & Heinz-Josef Lenz & Tobias S. Ulmer & Shannon M. Mumenthaler & Wooji, 2023. "Phosphorylation and stabilization of EZH2 by DCAF1/VprBP trigger aberrant gene silencing in colon cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26993-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.