IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26927-z.html
   My bibliography  Save this article

Charging and ultralong phosphorescence of lanthanide facilitated organic complex

Author

Listed:
  • Waygen Thor

    (Hong Kong Baptist University)

  • Yue Wu

    (Hong Kong Baptist University)

  • Lei Wang

    (Hong Kong Baptist University)

  • Yonghong Zhang

    (Hong Kong Baptist University
    Xinjiang University)

  • Peter A. Tanner

    (Hong Kong Baptist University)

  • Ka-Leung Wong

    (Hong Kong Baptist University)

Abstract

Emission from the triplet state of an organo-lanthanide complex is observed only when the energy transfer to the lanthanide ion is absent. The triplet state lifetime under cryogenic conditions for organo-lanthanide compounds usually ranges up to tens of milliseconds. The compound LaL1(TTA)3 reported herein exhibits 77 K phosphorescence observable by the naked eye for up to 30 s. Optical spectroscopy, density functional theory (DFT) and time-dependent DFT techniques have been applied to investigate the photophysical processes of this compound. In particular, on-off continuous irradiation cycles reveal a charging behaviour of the emission which is associated with triplet-triplet absorption because it shows a shorter rise lifetime than the corresponding decay lifetime and it varies with illumination intensity. The discovery of the behaviour of this compound provides insight into important photophysical processes of the triplet state of organo-lanthanide systems and may open new fields of application such as data encryption, anti-counterfeiting and temperature switching.

Suggested Citation

  • Waygen Thor & Yue Wu & Lei Wang & Yonghong Zhang & Peter A. Tanner & Ka-Leung Wong, 2021. "Charging and ultralong phosphorescence of lanthanide facilitated organic complex," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26927-z
    DOI: 10.1038/s41467-021-26927-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26927-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26927-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zesen Lin & Ryota Kabe & Kai Wang & Chihaya Adachi, 2020. "Influence of energy gap between charge-transfer and locally excited states on organic long persistence luminescence," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongjuan Huang & Yunfei He & Juan Wang & Jindou Zou & Hailan Wang & Haodong Sun & Yuxin Xiao & Dexin Zheng & Jiani Ma & Tao Yu & Wei Huang, 2024. "Tunable afterglow for mechanical self-monitoring 3D printing structures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26927-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.