IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26855-y.html
   My bibliography  Save this article

Coexisting multi-states in catalytic hydrogen oxidation on rhodium

Author

Listed:
  • P. Winkler

    (TU Wien)

  • J. Zeininger

    (TU Wien)

  • M. Raab

    (TU Wien)

  • Y. Suchorski

    (TU Wien)

  • A. Steiger-Thirsfeld

    (TU Wien)

  • M. Stöger-Pollach

    (TU Wien)

  • M. Amati

    (Elettra–Sincrotrone Trieste S.C.p.A.)

  • L. Gregoratti

    (Elettra–Sincrotrone Trieste S.C.p.A.)

  • H. Grönbeck

    (Chalmers University of Technology)

  • G. Rupprechter

    (TU Wien)

Abstract

Catalytic hydrogen oxidation on a polycrystalline rhodium foil used as a surface structure library is studied by scanning photoelectron microscopy (SPEM) in the 10−6 mbar pressure range, yielding spatially resolved X-ray photoemission spectroscopy (XPS) measurements. Here we report an observation of a previously unknown coexistence of four different states on adjacent differently oriented domains of the same Rh sample at the exactly same conditions. A catalytically active steady state, a catalytically inactive steady state and multifrequential oscillating states are simultaneously observed. Our results thus demonstrate the general possibility of multi-states in a catalytic reaction. This highly unusual behaviour is explained on the basis of peculiarities of the formation and depletion of subsurface oxygen on differently structured Rh surfaces. The experimental findings are supported by mean-field micro-kinetic modelling. The present observations raise the interdisciplinary question of how self-organising dynamic processes in a heterogeneous system are influenced by the permeability of the borders confining the adjacent regions.

Suggested Citation

  • P. Winkler & J. Zeininger & M. Raab & Y. Suchorski & A. Steiger-Thirsfeld & M. Stöger-Pollach & M. Amati & L. Gregoratti & H. Grönbeck & G. Rupprechter, 2021. "Coexisting multi-states in catalytic hydrogen oxidation on rhodium," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26855-y
    DOI: 10.1038/s41467-021-26855-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26855-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26855-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kumari, Sangeeta & Upadhyay, Ranjit Kumar, 2021. "Exploring the behavior of malware propagation on mobile wireless sensor networks: Stability and control analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 246-269.
    2. Yuri Suchorski & Martin Datler & Ivan Bespalov & Johannes Zeininger & Michael Stöger-Pollach & Johannes Bernardi & Henrik Grönbeck & Günther Rupprechter, 2018. "Visualizing catalyst heterogeneity by a multifrequential oscillating reaction," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilian Raab & Johannes Zeininger & Yuri Suchorski & Keita Tokuda & Günther Rupprechter, 2023. "Emergence of chaos in a compartmentalized catalytic reaction nanosystem," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Maximilian Raab & Johannes Zeininger & Yuri Suchorski & Alexander Genest & Carla Weigl & Günther Rupprechter, 2023. "Lanthanum modulated reaction pacemakers on a single catalytic nanoparticle," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximilian Raab & Johannes Zeininger & Yuri Suchorski & Alexander Genest & Carla Weigl & Günther Rupprechter, 2023. "Lanthanum modulated reaction pacemakers on a single catalytic nanoparticle," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Tanmay Ghosh & Juan Manuel Arce-Ramos & Wen-Qing Li & Hongwei Yan & See Wee Chee & Alexander Genest & Utkur Mirsaidov, 2022. "Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Hui Xin & Rongtan Li & Le Lin & Rentao Mu & Mingrun Li & Dan Li & Qiang Fu & Xinhe Bao, 2024. "Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. A. Martín del Rey, 2023. "Design and Analysis of an Individual-Based Model for Malware Propagation on IoT Networks," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    5. Maximilian Raab & Johannes Zeininger & Yuri Suchorski & Keita Tokuda & Günther Rupprechter, 2023. "Emergence of chaos in a compartmentalized catalytic reaction nanosystem," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26855-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.