IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26627-8.html
   My bibliography  Save this article

Real-time observation of Cooper pair splitting showing strong non-local correlations

Author

Listed:
  • Antti Ranni

    (Lund University)

  • Fredrik Brange

    (Aalto University)

  • Elsa T. Mannila

    (Aalto University)

  • Christian Flindt

    (Aalto University)

  • Ville F. Maisi

    (Lund University)

Abstract

Controlled generation and detection of quantum entanglement between spatially separated particles constitute an essential prerequisite both for testing the foundations of quantum mechanics and for realizing future quantum technologies. Splitting of Cooper pairs from a superconductor provides entangled electrons at separate locations. However, experimentally accessing the individual split Cooper pairs constitutes a major unresolved issue as they mix together with electrons from competing processes. Here, we overcome this challenge with the first real-time observation of the splitting of individual Cooper pairs, enabling direct access to the time-resolved statistics of Cooper pair splitting. We determine the correlation statistics arising from two-electron processes and find a pronounced peak that is two orders of magnitude larger than the background. Our experiment thereby allows to unambiguously pinpoint and select split Cooper pairs with 99% fidelity. These results open up an avenue for performing experiments that tap into the spin-entanglement of split Cooper pairs.

Suggested Citation

  • Antti Ranni & Fredrik Brange & Elsa T. Mannila & Christian Flindt & Ville F. Maisi, 2021. "Real-time observation of Cooper pair splitting showing strong non-local correlations," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26627-8
    DOI: 10.1038/s41467-021-26627-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26627-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26627-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anindya Das & Yuval Ronen & Moty Heiblum & Diana Mahalu & Andrey V Kretinin & Hadas Shtrikman, 2012. "High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    2. R. S. Deacon & A. Oiwa & J. Sailer & S. Baba & Y. Kanai & K. Shibata & K. Hirakawa & S. Tarucha, 2015. "Erratum: Cooper pair splitting in parallel quantum dot Josephson junctions," Nature Communications, Nature, vol. 6(1), pages 1-1, December.
    3. Z. B. Tan & A. Laitinen & N. S. Kirsanov & A. Galda & V. M. Vinokur & M. Haque & A. Savin & D. S. Golubev & G. B. Lesovik & P. J. Hakonen, 2021. "Thermoelectric current in a graphene Cooper pair splitter," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. R. S. Deacon & A. Oiwa & J. Sailer & S. Baba & Y. Kanai & K. Shibata & K. Hirakawa & S. Tarucha, 2015. "Cooper pair splitting in parallel quantum dot Josephson junctions," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešič & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2024. "Correlation between two distant quasiparticles in separate superconducting islands mediated by a single spin," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingzhen Wang & Sebastiaan L. D. Haaf & Ivan Kulesh & Di Xiao & Candice Thomas & Michael J. Manfra & Srijit Goswami, 2023. "Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Sadashige Matsuo & Takaya Imoto & Tomohiro Yokoyama & Yosuke Sato & Tyler Lindemann & Sergei Gronin & Geoffrey C. Gardner & Sho Nakosai & Yukio Tanaka & Michael J. Manfra & Seigo Tarucha, 2023. "Phase-dependent Andreev molecules and superconducting gap closing in coherently-coupled Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Bhupendra Kumar & Sachin Verma & Tanuj Chamoli & Ajay, 2023. "Josephson transport across T-shaped and series-configured double quantum dots system at infinite- $$\textit{U}$$ U limit," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26627-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.