IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26411-8.html
   My bibliography  Save this article

The origin of the particle-size-dependent selectivity in 1-butene isomerization and hydrogenation on Pd/Al2O3 catalysts

Author

Listed:
  • Alexander Genest

    (Technische Universität Wien
    Agency for Science, Technology and Research)

  • Joaquín Silvestre-Albero

    (Technische Universität Wien
    Universidad de Alicante)

  • Wen-Qing Li

    (Agency for Science, Technology and Research)

  • Notker Rösch

    (Technische Universität Wien
    Technische Universität München)

  • Günther Rupprechter

    (Technische Universität Wien)

Abstract

The selectivity of 1-butene hydrogenation/isomerization on Pd catalysts is known to be particle size dependent. Here we show that combining well-defined model catalysts, atmospheric pressure reaction kinetics, DFT calculations and microkinetic modeling enables to rationalize the particle size effect based on the abundance and the specific properties of the contributing surface facets.

Suggested Citation

  • Alexander Genest & Joaquín Silvestre-Albero & Wen-Qing Li & Notker Rösch & Günther Rupprechter, 2021. "The origin of the particle-size-dependent selectivity in 1-butene isomerization and hydrogenation on Pd/Al2O3 catalysts," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26411-8
    DOI: 10.1038/s41467-021-26411-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26411-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26411-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. See Wee Chee & Juan Manuel Arce-Ramos & Wenqing Li & Alexander Genest & Utkur Mirsaidov, 2020. "Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taek-Seung Kim & Christopher R. O’Connor & Christian Reece, 2024. "Interrogating site dependent kinetics over SiO2-supported Pt nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Tanmay Ghosh & Juan Manuel Arce-Ramos & Wen-Qing Li & Hongwei Yan & See Wee Chee & Alexander Genest & Utkur Mirsaidov, 2022. "Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26411-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.