IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26391-9.html
   My bibliography  Save this article

Globally consistent assessment of coastal eutrophication

Author

Listed:
  • Elígio de Raús Maúre

    (Northwest Pacific Region Environmental Cooperation Center)

  • Genki Terauchi

    (Northwest Pacific Region Environmental Cooperation Center)

  • Joji Ishizaka

    (Nagoya University)

  • Nicholas Clinton

    (Google LLC)

  • Michael DeWitt

    (Google LLC)

Abstract

Eutrophication is an emerging global issue associated with increasing anthropogenic nutrient loading. The impacts and extent of eutrophication are often limited to regions with dedicated monitoring programmes. Here we introduce the first global and Google Earth Engine-based interactive assessment tool of coastal eutrophication potential (CEP). The tool evaluates trends in satellite-derived chlorophyll-a (CHL) to devise a global map of CEP. Our analyses suggest that, globally, coastal waters (depth ≤200 m) covering ∼1.15 million km2 are eutrophic potential. Also, waters associated with CHL increasing trends—eutrophication potential—are twofold higher than those showing signs of recovery. The tool effectively identified areas of known eutrophication with severe symptoms, like dead zones, as well as those with limited to no information of the eutrophication. Our tool introduces the prospect for a consistent global assessment of eutrophication trends with major implications for monitoring Sustainable Development Goals (SDGs) and the application of Earth Observations in support of SDGs.

Suggested Citation

  • Elígio de Raús Maúre & Genki Terauchi & Joji Ishizaka & Nicholas Clinton & Michael DeWitt, 2021. "Globally consistent assessment of coastal eutrophication," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26391-9
    DOI: 10.1038/s41467-021-26391-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26391-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26391-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Behrenfeld & Robert T. O’Malley & David A. Siegel & Charles R. McClain & Jorge L. Sarmiento & Gene C. Feldman & Allen J. Milligan & Paul G. Falkowski & Ricardo M. Letelier & Emmanuel S. Bos, 2006. "Climate-driven trends in contemporary ocean productivity," Nature, Nature, vol. 444(7120), pages 752-755, December.
    2. Helga do Rosário Gomes & Joaquim I. Goes & S. G. P. Matondkar & Edward J. Buskey & Subhajit Basu & Sushma Parab & Prasad Thoppil, 2014. "Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beiying Li & Conghe Liu & Jingjing Bai & Yikun Huang & Run Su & Yan Wei & Bin Ma, 2024. "Strategy to mitigate substrate inhibition in wastewater treatment systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Awais Mahmood & Ahsan Farooq & Haseeb Akbar & Hafiz Usman Ghani & Shabbir H. Gheewala, 2023. "An Integrated Approach to Analyze the Progress of Developing Economies in Asia toward the Sustainable Development Goals," Sustainability, MDPI, vol. 15(18), pages 1-33, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2012. "Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model," Ecological Modelling, Elsevier, vol. 244(C), pages 132-147.
    2. Flora Vincent & Matti Gralka & Guy Schleyer & Daniella Schatz & Miguel Cabrera-Brufau & Constanze Kuhlisch & Andreas Sichert & Silvia Vidal-Melgosa & Kyle Mayers & Noa Barak-Gavish & J. Michel Flores , 2023. "Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Gurib-Fakim, A. & Smith, L. & Acikgoz, N. & Avato, P. & Bossio, Deborah & Ebi, K. & Goncalves, A. & Heinemann, J. A. & Herrmann, T. M. & Padgham, J. & Pennarz, J. & Scheidegger, U. & Sebastian, L. & T, 2009. "Options to enhance the impact of AKST on development and sustainability goals," IWMI Books, Reports H042792, International Water Management Institute.
    5. Evangelos Tzanatos & Dionysios Raitsos & George Triantafyllou & Stylianos Somarakis & Anastasios Tsonis, 2014. "Indications of a climate effect on Mediterranean fisheries," Climatic Change, Springer, vol. 122(1), pages 41-54, January.
    6. Quentin Grafton, R., 2010. "Adaptation to climate change in marine capture fisheries," Marine Policy, Elsevier, vol. 34(3), pages 606-615, May.
    7. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).
    9. Taelman, Sue Ellen & De Meester, Steven & Schaubroeck, Thomas & Sakshaug, Egil & Alvarenga, Rodrigo A.F. & Dewulf, Jo, 2014. "Accounting for the occupation of the marine environment as a natural resource in life cycle assessment: An exergy based approach," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 1-10.
    10. Michael Fogarty & Lewis Incze & Katherine Hayhoe & David Mountain & James Manning, 2008. "Potential climate change impacts on Atlantic cod (Gadus morhua) off the northeastern USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 453-466, June.
    11. Gurib-Fakim, Ameenah & Smith, Linda & Acikgoz, Nazimi & Avato, Patrick & Bossio, Deborah A. & Ebi, Kristie. & Goncalves, Andre & Heinemann, Jack A. & Herrmann, Thora Martina & Padgham, Jonathan & Penn, 2009. "Options to enhance the impact of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.
    12. Jin Wei & Xiaonan Ji & Wei Hu, 2022. "Characteristics of Phytoplankton Production in Wet and Dry Seasons in Hyper-Eutrophic Lake Taihu, China," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    13. Vitul Agarwal & Jonathan Chávez-Casillas & Keisuke Inomura & Colleen B. Mouw, 2024. "Patterns in the temporal complexity of global chlorophyll concentration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Zhang, Dahai & Fan, Wei & Yang, Jing & Pan, Yiwen & Chen, Ying & Huang, Haocai & Chen, Jiawang, 2016. "Reviews of power supply and environmental energy conversions for artificial upwelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 659-668.
    15. Krishna, Shubham & Pahlow, Markus & Schartau, Markus, 2019. "Comparison of two carbon-nitrogen regulatory models calibrated with mesocosm data," Ecological Modelling, Elsevier, vol. 411(C).
    16. Yan Bai & Xianqiang He & Shujie Yu & Chen-Tung Arthur Chen, 2018. "Changes in the Ecological Environment of the Marginal Seas along the Eurasian Continent from 2003 to 2014," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    17. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2013. "Reprint of: “Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model”," Ecological Modelling, Elsevier, vol. 264(C), pages 48-63.
    18. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Reid S. Brennan & James A. deMayo & Hans G. Dam & Michael B. Finiguerra & Hannes Baumann & Melissa H. Pespeni, 2022. "Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Brian Pentz & Nicole Klenk, 2020. "Understanding the limitations of current RFMO climate change adaptation strategies: the case of the IATTC and the Eastern Pacific Ocean," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(1), pages 21-39, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26391-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.