IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26311-x.html
   My bibliography  Save this article

Breaking of Henry’s law for sulfide liquid–basaltic melt partitioning of Pt and Pd

Author

Listed:
  • Mingdong Zhang

    (Chinese Academy of Sciences
    CAS Center for Excellence in Deep Earth Science
    University of the Chinese Academy of Sciences)

  • Yuan Li

    (Chinese Academy of Sciences
    CAS Center for Excellence in Deep Earth Science)

Abstract

Platinum group elements are invaluable tracers for planetary accretion and differentiation and the formation of PGE sulfide deposits. Previous laboratory determinations of the sulfide liquid–basaltic melt partition coefficients of PGE ( $${D}_{PGE}^{SL/SM}$$ D P G E S L / S M ) yielded values of 102–109, and values of >105 have been accepted by the geochemical and cosmochemical society. Here we perform measurements of $${D}_{Pt,\,Pd}^{SL/SM}$$ D P t , P d S L / S M at 1 GPa and 1,400 °C, and find that $${D}_{Pt,\,Pd}^{SL/SM}$$ D P t , P d S L / S M increase respectively from 3,500 to 3.5 × 105 and 1,800 to 7 × 105, as the Pt and Pd concentration in the sulfide liquid increases from 60 to 21,000 ppm and 26 to 7,000 ppm, respectively, implying non-Henrian behavior of the Pt and Pd partitioning. The use of $${D}_{Pt,\,Pd}^{SL/SM}$$ D P t , P d S L / S M values of 2,000–6,000 well explains the Pt and Pd systematics of Earth’s mantle peridotites and mid-ocean ridge basalts. Our findings suggest that the behavior of PGE needs to be reevaluated when using them to trace planetary magmatic processes.

Suggested Citation

  • Mingdong Zhang & Yuan Li, 2021. "Breaking of Henry’s law for sulfide liquid–basaltic melt partitioning of Pt and Pd," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26311-x
    DOI: 10.1038/s41467-021-26311-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26311-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26311-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olivier Alard & William L. Griffin & Jean Pierre Lorand & Simon E. Jackson & Suzanne Y. O'Reilly, 2000. "Non-chondritic distribution of the highly siderophile elements in mantle sulphides," Nature, Nature, vol. 407(6806), pages 891-894, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26311-x. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.