IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26269-w.html
   My bibliography  Save this article

Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression

Author

Listed:
  • Kerstin Johann

    (Johannes Gutenberg University)

  • Toszka Bohn

    (Johannes Gutenberg University)

  • Fatemeh Shahneh

    (Johannes Gutenberg University)

  • Natascha Luther

    (Johannes Gutenberg University)

  • Alexander Birke

    (Johannes Gutenberg University)

  • Henriette Jaurich

    (Johannes Gutenberg University
    Johannes Gutenberg University)

  • Mark Helm

    (Johannes Gutenberg University)

  • Matthias Klein

    (Johannes Gutenberg University)

  • Verena K. Raker

    (Johannes Gutenberg University
    Westfälische Wilhelms-University)

  • Tobias Bopp

    (Johannes Gutenberg University)

  • Matthias Barz

    (Johannes Gutenberg University
    Leiden Academic Center for Drug Research (LACDR))

  • Christian Becker

    (Johannes Gutenberg University
    Westfälische Wilhelms-University)

Abstract

The acidic tumor microenvironment in melanoma drives immune evasion by up-regulating cyclic adenosine monophosphate (cAMP) in tumor-infiltrating monocytes. Here we show that the release of non-toxic concentrations of an adenylate cyclase (AC) inhibitor from poly(sarcosine)-block-poly(L-glutamic acid γ-benzyl ester) (polypept(o)id) copolymer micelles restores antitumor immunity. In combination with selective, non-therapeutic regulatory T cell depletion, AC inhibitor micelles achieve a complete remission of established B16-F10-OVA tumors. Single-cell sequencing of melanoma-infiltrating immune cells shows that AC inhibitor micelles reduce the number of anti-inflammatory myeloid cells and checkpoint receptor expression on T cells. AC inhibitor micelles thus represent an immunotherapeutic measure to counteract melanoma immune escape.

Suggested Citation

  • Kerstin Johann & Toszka Bohn & Fatemeh Shahneh & Natascha Luther & Alexander Birke & Henriette Jaurich & Mark Helm & Matthias Klein & Verena K. Raker & Tobias Bopp & Matthias Barz & Christian Becker, 2021. "Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26269-w
    DOI: 10.1038/s41467-021-26269-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26269-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26269-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antoni Ribas & Paul C. Tumeh, 2012. "Tumours switch to resist," Nature, Nature, vol. 490(7420), pages 347-348, October.
    2. Marc A. Gavin & Jeffrey P. Rasmussen & Jason D. Fontenot & Valeria Vasta & Vincent C. Manganiello & Joseph A. Beavo & Alexander Y. Rudensky, 2007. "Foxp3-dependent programme of regulatory T-cell differentiation," Nature, Nature, vol. 445(7129), pages 771-775, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Hong & Jianhua Xing & Liwu Li & John J Tyson, 2011. "A Mathematical Model for the Reciprocal Differentiation of T Helper 17 Cells and Induced Regulatory T Cells," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-13, July.
    2. Di Wu & Haomin Li & Mingwei Liu & Jun Qin & Yi Sun, 2022. "The Ube2m-Rbx1 neddylation-Cullin-RING-Ligase proteins are essential for the maintenance of Regulatory T cell fitness," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Zhi Liu & Dong-Sung Lee & Yuqiong Liang & Ye Zheng & Jesse R. Dixon, 2023. "Foxp3 orchestrates reorganization of chromatin architecture to establish regulatory T cell identity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Chelisa Cardinez & Yuwei Hao & Kristy Kwong & Ainsley R. Davies & Morgan B. Downes & Nadia A. Roberts & Jason D. Price & Raquel A. Hernandez & Jessica Lovell & Rochna Chand & Zhi-Ping Feng & Anselm En, 2024. "IKK2 controls the inflammatory potential of tissue-resident regulatory T cells in a murine gain of function model," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26269-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.