IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26171-5.html
   My bibliography  Save this article

Particle-like topologies in light

Author

Listed:
  • Danica Sugic

    (University of Birmingham
    University of Bristol
    RIKEN Cluster for Pioneering Research)

  • Ramon Droop

    (University of Muenster)

  • Eileen Otte

    (University of Muenster)

  • Daniel Ehrmanntraut

    (University of Muenster)

  • Franco Nori

    (RIKEN Cluster for Pioneering Research
    University of Michigan)

  • Janne Ruostekoski

    (Lancaster University)

  • Cornelia Denz

    (University of Muenster)

  • Mark R. Dennis

    (University of Birmingham
    University of Bristol
    University of Birmingham)

Abstract

Three-dimensional (3D) topological states resemble truly localised, particle-like objects in physical space. Among the richest such structures are 3D skyrmions and hopfions, that realise integer topological numbers in their configuration via homotopic mappings from real space to the hypersphere (sphere in 4D space) or the 2D sphere. They have received tremendous attention as exotic textures in particle physics, cosmology, superfluids, and many other systems. Here we experimentally create and measure a topological 3D skyrmionic hopfion in fully structured light. By simultaneously tailoring the polarisation and phase profile, our beam establishes the skyrmionic mapping by realising every possible optical state in the propagation volume. The resulting light field’s Stokes parameters and phase are synthesised into a Hopf fibration texture. We perform volumetric full-field reconstruction of the $${{{\Pi }}}_{{{3}}}$$ Π 3 mapping, measuring a quantised topological charge, or Skyrme number, of 0.945. Such topological state control opens avenues for 3D optical data encoding and metrology. The Hopf characterisation of the optical hypersphere endows a fresh perspective to topological optics, offering experimentally-accessible photonic analogues to the gamut of particle-like 3D topological textures, from condensed matter to high-energy physics.

Suggested Citation

  • Danica Sugic & Ramon Droop & Eileen Otte & Daniel Ehrmanntraut & Franco Nori & Janne Ruostekoski & Cornelia Denz & Mark R. Dennis, 2021. "Particle-like topologies in light," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26171-5
    DOI: 10.1038/s41467-021-26171-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26171-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26171-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guslienko, Konstantin Y., 2023. "Emergent magnetic field and vector potential of the toroidal magnetic hopfions," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26171-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.