Author
Listed:
- Insung Han
(University of Michigan
Department of Materials, University of Oxford)
- Kelly L. Wang
(University of Michigan)
- Andrew T. Cadotte
(Applied Physics Program, University of Michigan)
- Zhucong Xi
(University of Michigan)
- Hadi Parsamehr
(University of Michigan)
- Xianghui Xiao
(National Synchrotron Light Source-II, Brookhaven National Laboratory)
- Sharon C. Glotzer
(University of Michigan
University of Michigan
Applied Physics Program, University of Michigan
University of Michigan)
- Ashwin J. Shahani
(University of Michigan
University of Michigan)
Abstract
Quasicrystals exhibit long-range order but lack translational symmetry. When grown as single crystals, they possess distinctive and unusual properties owing to the absence of grain boundaries. Unfortunately, conventional methods such as bulk crystal growth or thin film deposition only allow us to synthesize either polycrystalline quasicrystals or quasicrystals that are at most a few centimeters in size. Here, we reveal through real-time and 3D imaging the formation of a single decagonal quasicrystal arising from a hard collision between multiple growing quasicrystals in an Al-Co-Ni liquid. Through corresponding molecular dynamics simulations, we examine the underlying kinetics of quasicrystal coalescence and investigate the effects of initial misorientation between the growing quasicrystalline grains on the formation of grain boundaries. At small misorientation, coalescence occurs following rigid rotation that is facilitated by phasons. Our joint experimental-computational discovery paves the way toward fabrication of single, large-scale quasicrystals for novel applications.
Suggested Citation
Insung Han & Kelly L. Wang & Andrew T. Cadotte & Zhucong Xi & Hadi Parsamehr & Xianghui Xiao & Sharon C. Glotzer & Ashwin J. Shahani, 2021.
"Formation of a single quasicrystal upon collision of multiple grains,"
Nature Communications, Nature, vol. 12(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26070-9
DOI: 10.1038/s41467-021-26070-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26070-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.