IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25998-2.html
   My bibliography  Save this article

Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE

Author

Listed:
  • Weiguang Wang

    (University of California
    California NanoSystems Institute, University of California)

  • Kirill Tsirulnikov

    (University of California)

  • Hristina R. Zhekova

    (University of Calgary)

  • Gülru Kayık

    (University of Calgary)

  • Hanif Muhammad Khan

    (University of Calgary)

  • Rustam Azimov

    (University of California)

  • Natalia Abuladze

    (University of California)

  • Liyo Kao

    (University of California)

  • Debbie Newman

    (University of California)

  • Sergei Yu. Noskov

    (University of Calgary)

  • Z. Hong Zhou

    (California NanoSystems Institute, University of California
    University of California)

  • Alexander Pushkin

    (University of California)

  • Ira Kurtz

    (University of California
    Brain Research Institute, University of California)

Abstract

SLC4 transporters play significant roles in pH regulation and cellular sodium transport. The previously solved structures of the outward facing (OF) conformation for AE1 (SLC4A1) and NBCe1 (SLC4A4) transporters revealed an identical overall fold despite their different transport modes (chloride/bicarbonate exchange versus sodium-carbonate cotransport). However, the exact mechanism determining the different transport modes in the SLC4 family remains unknown. In this work, we report the cryo-EM 3.4 Å structure of the OF conformation of NDCBE (SLC4A8), which shares transport properties with both AE1 and NBCe1 by mediating the electroneutral exchange of sodium-carbonate with chloride. This structure features a fully resolved extracellular loop 3 and well-defined densities corresponding to sodium and carbonate ions in the tentative substrate binding pocket. Further, we combine computational modeling with functional studies to unravel the molecular determinants involved in NDCBE and SLC4 transport.

Suggested Citation

  • Weiguang Wang & Kirill Tsirulnikov & Hristina R. Zhekova & Gülru Kayık & Hanif Muhammad Khan & Rustam Azimov & Natalia Abuladze & Liyo Kao & Debbie Newman & Sergei Yu. Noskov & Z. Hong Zhou & Alexande, 2021. "Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25998-2
    DOI: 10.1038/s41467-021-25998-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25998-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25998-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takaaki A. Kobayashi & Hiroto Shimada & Fumiya K. Sano & Yuzuru Itoh & Sawako Enoki & Yasushi Okada & Tsukasa Kusakizako & Osamu Nureki, 2024. "Dimeric transport mechanism of human vitamin C transporter SVCT1," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Benedikt T. Kuhn & Jonathan Zöller & Iwan Zimmermann & Tim Gemeinhardt & Dogukan H. Özkul & Julian D. Langer & Markus A. Seeger & Eric R. Geertsma, 2024. "Interdomain-linkers control conformational transitions in the SLC23 elevator transporter UraA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Weiqi Zhang & Dian Ding & Yishuo Lu & Hongyi Chen & Peijun Jiang & Peng Zuo & Guangxi Wang & Juan Luo & Yue Yin & Jianyuan Luo & Yuxin Yin, 2024. "Structural and functional insights into the lipid regulation of human anion exchanger 2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Lie Wang & Anthony Hoang & Eva Gil-Iturbe & Arthur Laganowsky & Matthias Quick & Ming Zhou, 2024. "Mechanism of anion exchange and small-molecule inhibition of pendrin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Liyan Jian & Qing Zhang & Deqiang Yao & Qian Wang & Moxin Chen & Ying Xia & Shaobai Li & Yafeng Shen & Mi Cao & An Qin & Lin Li & Yu Cao, 2024. "The structural insight into the functional modulation of human anion exchanger 3," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Qing Zhang & Liyan Jian & Deqiang Yao & Bing Rao & Ying Xia & Kexin Hu & Shaobai Li & Yafeng Shen & Mi Cao & An Qin & Jie Zhao & Yu Cao, 2023. "The structural basis of the pH-homeostasis mediated by the Cl−/HCO3− exchanger, AE2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yishuo Lu & Peng Zuo & Hongyi Chen & Hui Shan & Weize Wang & Zonglin Dai & He Xu & Yayu Chen & Ling Liang & Dian Ding & Yan Jin & Yuxin Yin, 2023. "Structural insights into the conformational changes of BTR1/SLC4A11 in complex with PIP2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25998-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.