Author
Listed:
- En Li
(The Hong Kong University of Science and Technology)
- Jin-Xin Hu
(The Hong Kong University of Science and Technology)
- Xuemeng Feng
(The Hong Kong University of Science and Technology)
- Zishu Zhou
(The Hong Kong University of Science and Technology)
- Liheng An
(The Hong Kong University of Science and Technology)
- Kam Tuen Law
(The Hong Kong University of Science and Technology)
- Ning Wang
(The Hong Kong University of Science and Technology)
- Nian Lin
(The Hong Kong University of Science and Technology)
Abstract
Moiré superlattices in van der Waals heterostructures provide a tunable platform to study emergent properties that are absent in the natural crystal form. Twisted bilayer transition metal dichalcogenides (TB-TMDs) can host moiré flat bands over a wide range of twist angles. For twist angle close to 60°, it was predicted that TB-TMDs undergo a lattice reconstruction which causes the formation of ultra-flat bands. Here, by using scanning tunneling microscopy and spectroscopy, we show the emergence of multiple ultra-flat bands in twisted bilayer WSe2 when the twist angle is within 3° of 60°. The ultra-flat bands are manifested as narrow tunneling conductance peaks with estimated bandwidth less than 10 meV, which is only a fraction of the estimated on-site Coulomb repulsion energy. The number of these ultra-flat bands and spatial distribution of the wavefunctions match well with the theoretical predictions, strongly evidencing that the observed ultra-flat bands are induced by lattice reconstruction. Our work provides a foundation for further study of the exotic correlated phases in TB-TMDs.
Suggested Citation
En Li & Jin-Xin Hu & Xuemeng Feng & Zishu Zhou & Liheng An & Kam Tuen Law & Ning Wang & Nian Lin, 2021.
"Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2,"
Nature Communications, Nature, vol. 12(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25924-6
DOI: 10.1038/s41467-021-25924-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25924-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.