IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25913-9.html
   My bibliography  Save this article

Development of a model-inference system for estimating epidemiological characteristics of SARS-CoV-2 variants of concern

Author

Listed:
  • Wan Yang

    (Mailman School of Public Health, Columbia University)

  • Jeffrey Shaman

    (Mailman School of Public Health, Columbia University)

Abstract

To support COVID-19 pandemic planning, we develop a model-inference system to estimate epidemiological properties of new SARS-CoV-2 variants of concern using case and mortality data while accounting for under-ascertainment, disease seasonality, non-pharmaceutical interventions, and mass-vaccination. Applying this system to study three variants of concern, we estimate that B.1.1.7 has a 46.6% (95% CI: 32.3–54.6%) transmissibility increase but nominal immune escape from protection induced by prior wild-type infection; B.1.351 has a 32.4% (95% CI: 14.6–48.0%) transmissibility increase and 61.3% (95% CI: 42.6–85.8%) immune escape; and P.1 has a 43.3% (95% CI: 30.3–65.3%) transmissibility increase and 52.5% (95% CI: 0–75.8%) immune escape. Model simulations indicate that B.1.351 and P.1 could outcompete B.1.1.7 and lead to increased infections. Our findings highlight the importance of preventing the spread of variants of concern, via continued preventive measures, prompt mass-vaccination, continued vaccine efficacy monitoring, and possible updating of vaccine formulations to ensure high efficacy.

Suggested Citation

  • Wan Yang & Jeffrey Shaman, 2021. "Development of a model-inference system for estimating epidemiological characteristics of SARS-CoV-2 variants of concern," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25913-9
    DOI: 10.1038/s41467-021-25913-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25913-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25913-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junya Sunagawa & Hyeongki Park & Kwang Su Kim & Ryo Komorizono & Sooyoun Choi & Lucia Ramirez Torres & Joohyeon Woo & Yong Dam Jeong & William S. Hart & Robin N. Thompson & Kazuyuki Aihara & Shingo Iw, 2023. "Isolation may select for earlier and higher peak viral load but shorter duration in SARS-CoV-2 evolution," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Lloyd A. C. Chapman & Maite Aubry & Noémie Maset & Timothy W. Russell & Edward S. Knock & John A. Lees & Henri-Pierre Mallet & Van-Mai Cao-Lormeau & Adam J. Kucharski, 2023. "Impact of vaccinations, boosters and lockdowns on COVID-19 waves in French Polynesia," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25913-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.