IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25911-x.html
   My bibliography  Save this article

Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells

Author

Listed:
  • Yanyan Sun

    (Technical University Berlin
    Central South University)

  • Shlomi Polani

    (Technical University Berlin)

  • Fang Luo

    (Technical University Berlin)

  • Sebastian Ott

    (Technical University Berlin)

  • Peter Strasser

    (Technical University Berlin)

  • Fabio Dionigi

    (Technical University Berlin)

Abstract

Proton exchange membrane fuel cells have been recently developed at an increasing pace as clean energy conversion devices for stationary and transport sector applications. High platinum cathode loadings contribute significantly to costs. This is why improved catalyst and support materials as well as catalyst layer design are critically needed. Recent advances in nanotechnologies and material sciences have led to the discoveries of several highly promising families of materials. These include platinum-based alloys with shape-selected nanostructures, platinum-group-metal-free catalysts such as metal-nitrogen-doped carbon materials and modification of the carbon support to control surface properties and ionomer/catalyst interactions. Furthermore, the development of advanced characterization techniques allows a deeper understanding of the catalyst evolution under different conditions. This review focuses on all these recent developments and it closes with a discussion of future research directions in the field.

Suggested Citation

  • Yanyan Sun & Shlomi Polani & Fang Luo & Sebastian Ott & Peter Strasser & Fabio Dionigi, 2021. "Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25911-x
    DOI: 10.1038/s41467-021-25911-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25911-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25911-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengnan Wang & Jiaguang Zhang & Silvia Favero & Luke J. R. Higgins & Hui Luo & Ifan E. L. Stephens & Maria-Magdalena Titirici, 2024. "Resolving optimal ionomer interaction in fuel cell electrodes via operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Hui Jin & Zhewei Xu & Zhi-Yi Hu & Zhiwen Yin & Zhao Wang & Zhao Deng & Ping Wei & Shihao Feng & Shunhong Dong & Jinfeng Liu & Sicheng Luo & Zhaodong Qiu & Liang Zhou & Liqiang Mai & Bao-Lian Su & Dong, 2023. "Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25911-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.