IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25875-y.html
   My bibliography  Save this article

Complex small-world regulatory networks emerge from the 3D organisation of the human genome

Author

Listed:
  • C. A. Brackley

    (University of Edinburgh)

  • N. Gilbert

    (MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital)

  • D. Michieletto

    (University of Edinburgh
    MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital)

  • A. Papantonis

    (University Medical Center, Georg-August University of Göttingen)

  • M. C. F. Pereira

    (University of Edinburgh)

  • P. R. Cook

    (University of Oxford)

  • D. Marenduzzo

    (University of Edinburgh)

Abstract

The discovery that overexpressing one or a few critical transcription factors can switch cell state suggests that gene regulatory networks are relatively simple. In contrast, genome-wide association studies (GWAS) point to complex phenotypes being determined by hundreds of loci that rarely encode transcription factors and which individually have small effects. Here, we use computer simulations and a simple fitting-free polymer model of chromosomes to show that spatial correlations arising from 3D genome organisation naturally lead to stochastic and bursty transcription as well as complex small-world regulatory networks (where the transcriptional activity of each genomic region subtly affects almost all others). These effects require factors to be present at sub-saturating levels; increasing levels dramatically simplifies networks as more transcription units are pressed into use. Consequently, results from GWAS can be reconciled with those involving overexpression. We apply this pan-genomic model to predict patterns of transcriptional activity in whole human chromosomes, and, as an example, the effects of the deletion causing the diGeorge syndrome.

Suggested Citation

  • C. A. Brackley & N. Gilbert & D. Michieletto & A. Papantonis & M. C. F. Pereira & P. R. Cook & D. Marenduzzo, 2021. "Complex small-world regulatory networks emerge from the 3D organisation of the human genome," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25875-y
    DOI: 10.1038/s41467-021-25875-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25875-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25875-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabrielle A. Dotson & Can Chen & Stephen Lindsly & Anthony Cicalo & Sam Dilworth & Charles Ryan & Sivakumar Jeyarajan & Walter Meixner & Cooper Stansbury & Joshua Pickard & Nicholas Beckloff & Amit Su, 2022. "Deciphering multi-way interactions in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Yi Liao & Juntao Wang & Zhangsheng Zhu & Yuanlong Liu & Jinfeng Chen & Yongfeng Zhou & Feng Liu & Jianjun Lei & Brandon S. Gaut & Bihao Cao & J. J. Emerson & Changming Chen, 2022. "The 3D architecture of the pepper genome and its relationship to function and evolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25875-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.