IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25780-4.html
   My bibliography  Save this article

Multiband charge density wave exposed in a transition metal dichalcogenide

Author

Listed:
  • Árpád Pásztor

    (Université de Genève)

  • Alessandro Scarfato

    (Université de Genève)

  • Marcello Spera

    (Université de Genève)

  • Felix Flicker

    (University of Oxford
    Cardiff University
    University of Bristol)

  • Céline Barreteau

    (Université de Genève)

  • Enrico Giannini

    (Université de Genève)

  • Jasper van Wezel

    (University of Amsterdam)

  • Christoph Renner

    (Université de Genève)

Abstract

In the presence of multiple bands, well-known electronic instabilities may acquire new complexity. While multiband superconductivity is the subject of extensive studies, the possibility of multiband charge density waves (CDWs) has been largely ignored so far. Here, combining energy dependent scanning tunnelling microscopy (STM) topography with a simple model of the charge modulations and a self-consistent calculation of the CDW gap, we find evidence for a multiband CDW in 2H-NbSe2. This CDW not only involves the opening of a gap on the inner band around the K-point, but also on the outer band. This leads to spatially out-of-phase charge modulations from electrons on these two bands, which we detect through a characteristic energy dependence of the CDW contrast in STM images.

Suggested Citation

  • Árpád Pásztor & Alessandro Scarfato & Marcello Spera & Felix Flicker & Céline Barreteau & Enrico Giannini & Jasper van Wezel & Christoph Renner, 2021. "Multiband charge density wave exposed in a transition metal dichalcogenide," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25780-4
    DOI: 10.1038/s41467-021-25780-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25780-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25780-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Felix Flicker & Jasper van Wezel, 2015. "Charge order from orbital-dependent coupling evidenced by NbSe2," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingchen Shen & Rolf Heid & Roland Hott & Amir-Abbas Haghighirad & Björn Salzmann & Marli Reis Cantarino & Claude Monney & Ayman H. Said & Mehdi Frachet & Bridget Murphy & Kai Rossnagel & Stephan Rose, 2023. "Precursor region with full phonon softening above the charge-density-wave phase transition in 2H-TaSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. A. Korshunov & H. Hu & D. Subires & Y. Jiang & D. Călugăru & X. Feng & A. Rajapitamahuni & C. Yi & S. Roychowdhury & M. G. Vergniory & J. Strempfer & C. Shekhar & E. Vescovo & D. Chernyshov & A. H. Sa, 2023. "Softening of a flat phonon mode in the kagome ScV6Sn6," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25780-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.