IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25678-1.html
   My bibliography  Save this article

Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants

Author

Listed:
  • Yiqiang Chen

    (The University of Hong Kong)

  • Yulin Wang

    (The University of Hong Kong)

  • David Paez-Espino

    (Joint Genome Institute, Lawrence Berkeley National Laboratory)

  • Martin F. Polz

    (Massachusetts Institute of Technology
    University of Vienna)

  • Tong Zhang

    (The University of Hong Kong)

Abstract

As one of the largest biotechnological applications, activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses, with 10-1,000-fold higher concentrations than in natural environments. However, the compositional variation and host-connections of AS viruses remain poorly explored. Here, we report a catalogue of ~50,000 prokaryotic viruses from six WWTPs, increasing the number of described viral species of AS by 23-fold, and showing the very high viral diversity which is largely unknown (98.4-99.6% of total viral contigs). Most viral genera are represented in more than one AS system with 53 identified across all. Viral infection widely spans 8 archaeal and 58 bacterial phyla, linking viruses with aerobic/anaerobic heterotrophs, and other functional microorganisms controlling nitrogen/phosphorous removal. Notably, Mycobacterium, notorious for causing AS foaming, is associated with 402 viral genera. Our findings expand the current AS virus catalogue and provide reference for the phage treatment to control undesired microorganisms in WWTPs.

Suggested Citation

  • Yiqiang Chen & Yulin Wang & David Paez-Espino & Martin F. Polz & Tong Zhang, 2021. "Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25678-1
    DOI: 10.1038/s41467-021-25678-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25678-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25678-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxuan Du & Jed A. Fuhrman & Fengzhu Sun, 2023. "ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yuxuan Du & Fengzhu Sun, 2023. "MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Ruonan Wu & Michelle R. Davison & William C. Nelson & Montana L. Smith & Mary S. Lipton & Janet K. Jansson & Ryan S. McClure & Jason E. McDermott & Kirsten S. Hofmockel, 2023. "Hi-C metagenome sequencing reveals soil phage–host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Wenxiu Wang & Weizhi Song & Marwan E. Majzoub & Xiaoyuan Feng & Bu Xu & Jianchang Tao & Yuanqing Zhu & Zhiyong Li & Pei-Yuan Qian & Nicole S. Webster & Torsten Thomas & Lu Fan, 2024. "Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Zongzhi Wu & Tang Liu & Qian Chen & Tianyi Chen & Jinyun Hu & Liyu Sun & Bingxue Wang & Wenpeng Li & Jinren Ni, 2024. "Unveiling the unknown viral world in groundwater," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25678-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.