IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25677-2.html
   My bibliography  Save this article

Relief of excited-state antiaromaticity enables the smallest red emitter

Author

Listed:
  • Heechan Kim

    (Seoul National University)

  • Woojin Park

    (Kyungpook National University)

  • Younghun Kim

    (Seoul National University)

  • Michael Filatov

    (Kyungpook National University)

  • Cheol Ho Choi

    (Kyungpook National University)

  • Dongwhan Lee

    (Seoul National University)

Abstract

It is commonly accepted that a large π-conjugated system is necessary to realize low-energy electronic transitions. Contrary to this prevailing notion, we present a new class of light-emitters utilizing a simple benzene core. Among different isomeric forms of diacetylphenylenediamine (DAPA), o- and p-DAPA are fluorescent, whereas m-DAPA is not. Remarkably, p-DAPA is the lightest (FW = 192) molecule displaying red emission. A systematic modification of the DAPA system allows the construction of a library of emitters covering the entire visible color spectrum. Theoretical analysis shows that their large Stokes shifts originate from the relief of excited-state antiaromaticity, rather than the typically assumed intramolecular charge transfer or proton transfer. A delicate interplay of the excited-state antiaromaticity and hydrogen bonding defines the photophysics of this new class of single benzene fluorophores. The formulated molecular design rules suggest that an extended π-conjugation is no longer a prerequisite for a long-wavelength light emission.

Suggested Citation

  • Heechan Kim & Woojin Park & Younghun Kim & Michael Filatov & Cheol Ho Choi & Dongwhan Lee, 2021. "Relief of excited-state antiaromaticity enables the smallest red emitter," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25677-2
    DOI: 10.1038/s41467-021-25677-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25677-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25677-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kui Yan & Zhubin Hu & Peng Yu & Zuyang He & Ying Chen & Jiajian Chen & Haitao Sun & Shangfeng Wang & Fan Zhang, 2024. "Ultra-photostable small-molecule dyes facilitate near-infrared biophotonics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25677-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.