IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25643-y.html
   My bibliography  Save this article

The RAD51 recombinase protects mitotic chromatin in human cells

Author

Listed:
  • Isabel E. Wassing

    (University of Oxford)

  • Emily Graham

    (University of Oxford)

  • Xanita Saayman

    (University of Oxford)

  • Lucia Rampazzo

    (University of Oxford)

  • Christine Ralf

    (University of Oxford)

  • Andrew Bassett

    (Wellcome Sanger Institute)

  • Fumiko Esashi

    (University of Oxford)

Abstract

The RAD51 recombinase plays critical roles in safeguarding genome integrity, which is fundamentally important for all living cells. While interphase functions of RAD51 in maintaining genome stability are well-characterised, its role in mitosis remains contentious. In this study, we show that RAD51 protects under-replicated DNA in mitotic human cells and, in this way, promotes mitotic DNA synthesis (MiDAS) and successful chromosome segregation. In cells experiencing mild replication stress, MiDAS was detected irrespective of mitotically generated DNA damage. MiDAS broadly required de novo RAD51 recruitment to single-stranded DNA, which was supported by the phosphorylation of RAD51 by the key mitotic regulator Polo-like kinase 1. Importantly, acute inhibition of MiDAS delayed anaphase onset and induced centromere fragility, suggesting a mechanism that prevents the satisfaction of the spindle assembly checkpoint while chromosomal replication remains incomplete. This study hence identifies an unexpected function of RAD51 in promoting genomic stability in mitosis.

Suggested Citation

  • Isabel E. Wassing & Emily Graham & Xanita Saayman & Lucia Rampazzo & Christine Ralf & Andrew Bassett & Fumiko Esashi, 2021. "The RAD51 recombinase protects mitotic chromatin in human cells," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25643-y
    DOI: 10.1038/s41467-021-25643-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25643-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25643-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Cohen & A. Guenolé & I. Lazar & A. Marnef & T. Clouaire & D. V. Vernekar & N. Puget & V. Rocher & C. Arnould & M. Aguirrebengoa & M. Genais & N. Firmin & R. A. Shamanna & R. Mourad & V. A. Bohr & V, 2022. "A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Wei Wu & Szymon A. Barwacz & Rahul Bhowmick & Katrine Lundgaard & Marisa M. Gonçalves Dinis & Malgorzata Clausen & Masato T. Kanemaki & Ying Liu, 2023. "Mitotic DNA synthesis in response to replication stress requires the sequential action of DNA polymerases zeta and delta in human cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25643-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.