IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25633-0.html
   My bibliography  Save this article

Structural determinants and regulation of spontaneous activity in GABAA receptors

Author

Listed:
  • Craig A. Sexton

    (Physiology & Pharmacology, UCL)

  • Reka Penzinger

    (Physiology & Pharmacology, UCL)

  • Martin Mortensen

    (Physiology & Pharmacology, UCL)

  • Damian P. Bright

    (Physiology & Pharmacology, UCL)

  • Trevor G. Smart

    (Physiology & Pharmacology, UCL)

Abstract

GABAA receptors are vital for controlling neuronal excitability and can display significant levels of constitutive activity that contributes to tonic inhibition. However, the mechanisms underlying spontaneity are poorly understood. Here we demonstrate a strict requirement for β3 subunit incorporation into receptors for spontaneous gating, facilitated by α4, α6 and δ subunits. The crucial molecular determinant involves four amino acids (GKER) in the β3 subunit’s extracellular domain, which interacts with adjacent receptor subunits to promote transition to activated, open channel conformations. Spontaneous activity is further regulated by β3 subunit phosphorylation and by allosteric modulators including neurosteroids and benzodiazepines. Promoting spontaneous activity reduced neuronal excitability, indicating that spontaneous currents will alter neural network activity. This study demonstrates how regional diversity in GABAA receptor isoform, protein kinase activity, and neurosteroid levels, can impact on tonic inhibition through the modulation of spontaneous GABAA receptor gating.

Suggested Citation

  • Craig A. Sexton & Reka Penzinger & Martin Mortensen & Damian P. Bright & Trevor G. Smart, 2021. "Structural determinants and regulation of spontaneous activity in GABAA receptors," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25633-0
    DOI: 10.1038/s41467-021-25633-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25633-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25633-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian J. G. Tessier & Johnathon R. Emlaw & Raymond M. Sturgeon & Corrie J. B. daCosta, 2023. "Derepression may masquerade as activation in ligand-gated ion channels," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25633-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.