IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25608-1.html
   My bibliography  Save this article

Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator

Author

Listed:
  • H. Idzuchi

    (Harvard University
    Tohoku University)

  • F. Pientka

    (Harvard University
    Goethe-Universität)

  • K.-F. Huang

    (Harvard University)

  • K. Harada

    (Center for Emergent Matter Science (CEMS), RIKEN, Hatoyama)

  • Ö. Gül

    (Harvard University)

  • Y. J. Shin

    (Harvard University
    Center for Functional Nanomaterials, Brookhaven National Laboratory)

  • L. T. Nguyen

    (Princeton University)

  • N. H. Jo

    (Iowa State University
    Iowa State University)

  • D. Shindo

    (Center for Emergent Matter Science (CEMS), RIKEN, Hatoyama)

  • R. J. Cava

    (Princeton University)

  • P. C. Canfield

    (Iowa State University
    Iowa State University)

  • P. Kim

    (Harvard University)

Abstract

In two-dimensional (2D) NbSe2 crystal, which lacks inversion symmetry, strong spin-orbit coupling aligns the spins of Cooper pairs to the orbital valleys, forming Ising Cooper pairs (ICPs). The unusual spin texture of ICPs can be further modulated by introducing magnetic exchange. Here, we report unconventional supercurrent phase in van der Waals heterostructure Josephson junctions (JJs) that couples NbSe2 ICPs across an atomically thin magnetic insulator (MI) Cr2Ge2Te6. By constructing a superconducting quantum interference device (SQUID), we measure the phase of the transferred Cooper pairs in the MI JJ. We demonstrate a doubly degenerate nontrivial JJ phase (ϕ), formed by momentum-conserving tunneling of ICPs across magnetic domains in the barrier. The doubly degenerate ground states in MI JJs provide a two-level quantum system that can be utilized as a new dissipationless component for superconducting quantum devices. Our work boosts the study of various superconducting states with spin-orbit coupling, opening up an avenue to designing new superconducting phase-controlled quantum electronic devices.

Suggested Citation

  • H. Idzuchi & F. Pientka & K.-F. Huang & K. Harada & Ö. Gül & Y. J. Shin & L. T. Nguyen & N. H. Jo & D. Shindo & R. J. Cava & P. C. Canfield & P. Kim, 2021. "Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25608-1
    DOI: 10.1038/s41467-021-25608-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25608-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25608-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhyeon Jo & Yuan Peisen & Haozhe Yang & Samuel Mañas-Valero & José J. Baldoví & Yao Lu & Eugenio Coronado & Fèlix Casanova & F. Sebastian Bergeret & Marco Gobbi & Luis E. Hueso, 2023. "Local control of superconductivity in a NbSe2/CrSBr van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Tapas Senapati & Ashwin Kumar Karnad & Kartik Senapati, 2023. "Phase biasing of a Josephson junction using Rashba–Edelstein effect," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25608-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.