IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25591-7.html
   My bibliography  Save this article

Decay and renormalization of a longitudinal mode in a quasi-two-dimensional antiferromagnet

Author

Listed:
  • Seung-Hwan Do

    (Materials Science and Technology Division, Oak Ridge National Laboratory)

  • Hao Zhang

    (Materials Science and Technology Division, Oak Ridge National Laboratory
    University of Tennessee)

  • Travis J. Williams

    (Neutron Scattering Division, Oak Ridge National Laboratory)

  • Tao Hong

    (Neutron Scattering Division, Oak Ridge National Laboratory)

  • V. Ovidiu Garlea

    (Neutron Scattering Division, Oak Ridge National Laboratory)

  • J. A. Rodriguez-Rivera

    (University of Maryland
    NIST Center for Neutron Research)

  • Tae-Hwan Jang

    (MPPHC-CPM, Max Planck POSTECH/Korea Research Initiative)

  • Sang-Wook Cheong

    (MPPHC-CPM, Max Planck POSTECH/Korea Research Initiative
    Rutgers University)

  • Jae-Hoon Park

    (MPPHC-CPM, Max Planck POSTECH/Korea Research Initiative
    Pohang University of Science and Technology)

  • Cristian D. Batista

    (University of Tennessee)

  • Andrew D. Christianson

    (Materials Science and Technology Division, Oak Ridge National Laboratory)

Abstract

An ongoing challenge in the study of quantum materials, is to reveal and explain collective quantum effects in spin systems where interactions between different modes types are important. Here we approach this problem through a combined experimental and theoretical study of interacting transverse and longitudinal modes in an easy-plane quantum magnet near a continuous quantum phase transition. Our inelastic neutron scattering measurements of Ba2FeSi2O7 reveal the emergence, decay, and renormalization of a longitudinal mode throughout the Brillouin zone. The decay of the longitudinal mode is particularly pronounced at the zone center. To account for the many-body effects of the interacting low-energy modes in anisotropic magnets, we generalize the standard spin-wave theory. The measured mode decay and renormalization is reproduced by including all one-loop corrections. The theoretical framework developed here is broadly applicable to quantum magnets with more than one type of low energy mode.

Suggested Citation

  • Seung-Hwan Do & Hao Zhang & Travis J. Williams & Tao Hong & V. Ovidiu Garlea & J. A. Rodriguez-Rivera & Tae-Hwan Jang & Sang-Wook Cheong & Jae-Hoon Park & Cristian D. Batista & Andrew D. Christianson, 2021. "Decay and renormalization of a longitudinal mode in a quasi-two-dimensional antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25591-7
    DOI: 10.1038/s41467-021-25591-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25591-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25591-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shunsuke Hasegawa & Hodaka Kikuchi & Shinichiro Asai & Zijun Wei & Barry Winn & Gabriele Sala & Shinichi Itoh & Takatsugu Masuda, 2024. "Field control of quasiparticle decay in a quantum antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Tao Hong & Tao Ying & Qing Huang & Sachith E. Dissanayake & Yiming Qiu & Mark M. Turnbull & Andrey A. Podlesnyak & Yan Wu & Huibo Cao & Yaohua Liu & Izuru Umehara & Jun Gouchi & Yoshiya Uwatoko & Masa, 2022. "Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C9H18N2CuBr4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25591-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.