IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25570-y.html
   My bibliography  Save this article

Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion

Author

Listed:
  • Jana Škerlová

    (Stockholm University)

  • Jens Berndtsson

    (Stockholm University)

  • Hendrik Nolte

    (Max-Planck-Institute for Biology of Ageing)

  • Martin Ott

    (Stockholm University
    University of Gothenburg)

  • Pål Stenmark

    (Stockholm University
    Lund University)

Abstract

The pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle by converting pyruvate into acetyl-coenzyme A. PDHc encompasses three enzymatically active subunits, namely pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Dihydrolipoyl transacetylase is a multidomain protein comprising a varying number of lipoyl domains, a peripheral subunit-binding domain, and a catalytic domain. It forms the structural core of the complex, provides binding sites for the other enzymes, and shuffles reaction intermediates between the active sites through covalently bound lipoyl domains. The molecular mechanism by which this shuttling occurs has remained elusive. Here, we report a cryo-EM reconstruction of the native E. coli dihydrolipoyl transacetylase core in a resting state. This structure provides molecular details of the assembly of the core and reveals how the lipoyl domains interact with the core at the active site.

Suggested Citation

  • Jana Škerlová & Jens Berndtsson & Hendrik Nolte & Martin Ott & Pål Stenmark, 2021. "Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25570-y
    DOI: 10.1038/s41467-021-25570-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25570-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25570-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Tüting & Fotis L. Kyrilis & Johannes Müller & Marija Sorokina & Ioannis Skalidis & Farzad Hamdi & Yashar Sadian & Panagiotis L. Kastritis, 2021. "Cryo-EM snapshots of a native lysate provide structural insights into a metabolon-embedded transacetylase reaction," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Lu Yang & Tristan Wagner & Ariel Mechaly & Alexandra Boyko & Eduardo M. Bruch & Daniela Megrian & Francesca Gubellini & Pedro M. Alzari & Marco Bellinzoni, 2023. "High resolution cryo-EM and crystallographic snapshots of the actinobacterial two-in-one 2-oxoglutarate dehydrogenase," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Erika M. Palmieri & Ronald Holewinski & Christopher L. McGinity & Ciro L. Pierri & Nunziata Maio & Jonathan M. Weiss & Vincenzo Tragni & Katrina M. Miranda & Tracey A. Rouault & Thorkell Andresson & D, 2023. "Pyruvate dehydrogenase operates as an intramolecular nitroxyl generator during macrophage metabolic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25570-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.