IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25548-w.html
   My bibliography  Save this article

Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics

Author

Listed:
  • Peijie Zhou

    (Peking University
    University of California, Irvine)

  • Shuxiong Wang

    (University of California, Irvine)

  • Tiejun Li

    (Peking University)

  • Qing Nie

    (University of California, Irvine
    University of California)

Abstract

Advances in single-cell technologies allow scrutinizing of heterogeneous cell states, however, detecting cell-state transitions from snap-shot single-cell transcriptome data remains challenging. To investigate cells with transient properties or mixed identities, we present MuTrans, a method based on multiscale reduction technique to identify the underlying stochastic dynamics that prescribes cell-fate transitions. By iteratively unifying transition dynamics across multiple scales, MuTrans constructs the cell-fate dynamical manifold that depicts progression of cell-state transitions, and distinguishes stable and transition cells. In addition, MuTrans quantifies the likelihood of all possible transition trajectories between cell states using coarse-grained transition path theory. Downstream analysis identifies distinct genes that mark the transient states or drive the transitions. The method is consistent with the well-established Langevin equation and transition rate theory. Applying MuTrans to datasets collected from five different single-cell experimental platforms, we show its capability and scalability to robustly unravel complex cell fate dynamics induced by transition cells in systems such as tumor EMT, iPSC differentiation and blood cell differentiation. Overall, our method bridges data-driven and model-based approaches on cell-fate transitions at single-cell resolution.

Suggested Citation

  • Peijie Zhou & Shuxiong Wang & Tiejun Li & Qing Nie, 2021. "Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25548-w
    DOI: 10.1038/s41467-021-25548-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25548-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25548-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peizhuo Wang & Xiao Wen & Han Li & Peng Lang & Shuya Li & Yipin Lei & Hantao Shu & Lin Gao & Dan Zhao & Jianyang Zeng, 2023. "Deciphering driver regulators of cell fate decisions from single-cell transcriptomics data with CEFCON," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Jolene S. Ranek & Wayne Stallaert & J. Justin Milner & Margaret Redick & Samuel C. Wolff & Adriana S. Beltran & Natalie Stanley & Jeremy E. Purvis, 2024. "DELVE: feature selection for preserving biological trajectories in single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-26, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25548-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.