IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25541-3.html
   My bibliography  Save this article

A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing

Author

Listed:
  • Yaojun Tong

    (Technical University of Denmark
    Shanghai Jiao Tong University (SJTU))

  • Tue S. Jørgensen

    (Technical University of Denmark)

  • Christopher M. Whitford

    (Technical University of Denmark)

  • Tilmann Weber

    (Technical University of Denmark)

  • Sang Yup Lee

    (Technical University of Denmark
    Korea Advanced Institute of Science and Technology (KAIST))

Abstract

CRISPR base editing is a powerful method to engineer bacterial genomes. However, it restricts editing to single-nucleotide substitutions. Here, to address this challenge, we adapt a CRISPR-Prime Editing-based, DSB-free, versatile, and single-nucleotide resolution genetic manipulation toolkit for prokaryotes. It can introduce substitutions, deletions, insertions, and the combination thereof, both in plasmids and the chromosome of E. coli with high fidelity. Notably, under optimal conditions, the efficiency of 1-bp deletions reach up to 40%. Moreover, deletions of up to 97 bp and insertions up to 33 bp were successful with the toolkit in E. coli, however, efficiencies dropped sharply with increased fragment sizes. With a second guide RNA, our toolkit can achieve multiplexed editing albeit with low efficiency. Here we report not only a useful addition to the genome engineering arsenal for E. coli, but also a potential basis for the development of similar toolkits for other bacteria.

Suggested Citation

  • Yaojun Tong & Tue S. Jørgensen & Christopher M. Whitford & Tilmann Weber & Sang Yup Lee, 2021. "A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25541-3
    DOI: 10.1038/s41467-021-25541-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25541-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25541-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyuan Zhang & Jiacheng Ma & Zhaowei Wu & Xiaoyang Chen & Yangyang Qian & Weizhong Chen & Zhipeng Wang & Ya Zhang & Huanhu Zhu & Xingxu Huang & Quanjiang Ji, 2024. "BacPE: a versatile prime-editing platform in bacteria by inhibiting DNA exonucleases," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25541-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.